List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5420721/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lilliput: speech perception in speech-weighted noise and in quiet in young children. International Journal of Audiology, 2023, 62, 747-755.	0.9	8
2	The digit triplet test as a self-test for hearing screening at the age of school-entry. International Journal of Audiology, 2022, 61, 408-415.	0.9	6
3	Instant improvement in monaural spatial hearing abilities through cognitive feedback. Experimental Brain Research, 2022, , 1.	0.7	3
4	The Intelligibility of Time-Compressed Speech Is Correlated with the Ability to Listen in Modulated Noise. JARO - Journal of the Association for Research in Otolaryngology, 2022, , 1.	0.9	1
5	The Impact of Location and Device Coupling on the Performance of the Osia System Actuator. BioMed Research International, 2022, 2022, 1-16.	0.9	3
6	Intracochlear pressure as an objective measure for perceived loudness with bone conduction implants. Hearing Research, 2022, 422, 108550.	0.9	4
7	Longitudinal auditory data of children with prelingual single-sided deafness managed with early cochlear implantation. Scientific Reports, 2022, 12, .	1.6	8
8	Brain mapping of auditory steadyâ€state responses: A broad view of cortical and subcortical sources. Human Brain Mapping, 2021, 42, 780-796.	1.9	33
9	Stimulus-evoked phase-locked activity along the human auditory pathway strongly varies across individuals. Scientific Reports, 2021, 11, 143.	1.6	18
10	The digit triplet test: a scoping review. International Journal of Audiology, 2021, 60, 946-963.	0.9	36
11	Noise Disturbance and Potential Hearing Loss Due to Exposure of Dental Equipment in Flemish Dentists. International Journal of Environmental Research and Public Health, 2021, 18, 5617.	1.2	11
12	Assessment of Receptive and Expressive Language Skills Among Young Children With Prelingual Single-Sided Deafness Managed With Early Cochlear Implantation. JAMA Network Open, 2021, 4, e2122591.	2.8	11
13	Age-Related Changes in Listening Effort for Children and Teenagers With Normal Hearing and Cochlear Implants. Ear and Hearing, 2021, 42, 506-519.	1.0	5
14	The Cost of Intrinsic and Extrinsic Cognitive Demands on Auditory Functioning in Older Adults With Normal Hearing or Using Hearing Aids. Ear and Hearing, 2021, 42, 615-628.	1.0	2
15	Home-Based Speech Perception Monitoring for Clinical Use With Cochlear Implant Users. Frontiers in Neuroscience, 2021, 15, 773427.	1.4	3
16	Neural Modulation Transmission Is a Marker for Speech Perception in Noise in Cochlear Implant Users. Ear and Hearing, 2020, 41, 591-602.	1.0	22
17	AVATAR Assesses Speech Understanding and Multitask Costs in Ecologically Relevant Listening Situations. Ear and Hearing, 2020, 41, 521-531.	1.0	16
18	Cochlear Implant Data Logs Predict Children's Receptive Vocabulary. Ear and Hearing, 2020, 41, 733-746.	1.0	24

2

#	Article	IF	CITATIONS
19	Neural Generators Underlying Temporal Envelope Processing Show Altered Responses and Hemispheric Asymmetry Across Age. Frontiers in Aging Neuroscience, 2020, 12, 596551.	1.7	13
20	Sonority-Related Novel Word Learning Ability of Children With Cochlear Implants With Optimal Oral Language Exposure. Ear and Hearing, 2020, 41, 1715-1731.	1.0	1
21	Age Affects Speech Understanding and Multitask Costs. Ear and Hearing, 2020, 41, 1412-1415.	1.0	3
22	Learning relations of knowledge transfer (KT) and knowledge integration (KI) of doctoral students during online interdisciplinary training: an exploratory study. Higher Education Research and Development, 2020, 39, 1290-1307.	1.9	10
23	Brain activation during non-habitual speech production: Revisiting the effects of simulated disfluencies in fluent speakers. PLoS ONE, 2020, 15, e0228452.	1.1	2
24	Language-Independent Hearing Screening Based on Masked Recognition of Ecological Sounds. Trends in Hearing, 2019, 23, 233121651986656.	0.7	4
25	Improving the efficiency of the digit triplet test using digit scoring with variable adaptive step sizes. International Journal of Audiology, 2019, 58, 670-677.	0.9	14
26	Longitudinal linguistic outcomes of toddlers with congenital singleâ€sided deafness—Six with and twelve without cochlear implant and nineteen normal hearing peers. Clinical Otolaryngology, 2019, 44, 671-676.	0.6	16
27	Contributions of non-primary cortical sources to auditory temporal processing. NeuroImage, 2019, 191, 303-314.	2.1	29
28	Reducing Artifacts in Intracochlear Pressure Measurements to Study Sound Transmission by Bone Conduction Stimulation in Humans. Otology and Neurotology, 2019, 40, e858-e867.	0.7	12
29	The effect of presentation level on spectrotemporal modulation detection. Hearing Research, 2019, 371, 11-18.	0.9	3
30	The association between hearing impairment and neural envelope encoding at different ages. Neurobiology of Aging, 2019, 74, 202-212.	1.5	36
31	Unilateral congenital hearing loss in children: Challenges and potentials. Hearing Research, 2019, 372, 29-41.	0.9	81
32	Digit Triplet Test Hearing Screening With Broadband and Low-Pass Filtered Noise in a Middle-Aged Population. Ear and Hearing, 2018, 39, 825-828.	1.0	15
33	Sonority's Effect as a Surface Cue on Lexical Speech Perception of Children With Cochlear Implants. Ear and Hearing, 2018, 39, 992-1007.	1.0	3
34	School-Age Hearing Screening Based on Speech-in-Noise Perception Using the Digit Triplet Test. Ear and Hearing, 2018, 39, 1104-1115.	1.0	28
35	Correlation and agreement between Language ENvironment Analysis (lenaâ,,¢) and manual transcription for Dutch natural language recordings. Behavior Research Methods, 2018, 50, 1921-1932.	2.3	33
36	Independent component analysis for cochlear implant artifacts attenuation from electrically evoked auditory steady-state response measurements. Journal of Neural Engineering, 2018, 15, 016006.	1.8	7

#	Article	IF	CITATIONS
37	Speech intelligibility of virtual humans. International Journal of Audiology, 2018, 57, 914-922.	0.9	12
38	Assessment of short-term exposure to an ultrasonic rodent repellent device. Journal of the Acoustical Society of America, 2018, 144, 2501-2510.	0.5	11
39	Neural envelope encoding predicts speech perception performance for normal-hearing and hearing-impaired adults. Hearing Research, 2018, 370, 189-200.	0.9	33
40	Electrophysiological and Behavioral Evidence of Reduced Binaural Temporal Processing in the Aging and Hearing Impaired Human Auditory System. Trends in Hearing, 2018, 22, 233121651878573.	0.7	17
41	Defining interdisciplinary competencies for audiological rehabilitation: findings from a modified Delphi study. International Journal of Audiology, 2018, 57, 81-90.	0.9	8
42	How age affects memory task performance in clinically normal hearing persons. Aging, Neuropsychology, and Cognition, 2017, 24, 264-280.	0.7	11
43	Singleâ€sided deafness affects language and auditory development – a case–control study. Clinical Otolaryngology, 2017, 42, 979-987.	0.6	40
44	Spatiotemporal reconstruction of auditory steady-state responses to acoustic amplitude modulations: Potential sources beyond the auditory pathway. NeuroImage, 2017, 148, 240-253.	2.1	70
45	Predicting phoneme and word recognition in noise using a computational model of the auditory periphery. Journal of the Acoustical Society of America, 2017, 141, 300-312.	0.5	9
46	Desynchronisation of auditory steady-state responses related to changes in interaural phase differences: an objective measure of binaural hearing. International Journal of Audiology, 2017, 56, 464-471.	0.9	8
47	Binaural Interaction Effects of 30–50 Hz Auditory Steady State Responses. Ear and Hearing, 2017, 38, e305-e315.	1.0	22
48	Auditory Environment Across the Life Span of Cochlear Implant Users: Insights From Data Logging. Journal of Speech, Language, and Hearing Research, 2017, 60, 1362-1377.	0.7	65
49	Spatial Selectivity in Cochlear Implants: Effects of Asymmetric Waveforms and Development of a Single-Point Measure. JARO - Journal of the Association for Research in Otolaryngology, 2017, 18, 711-727.	0.9	10
50	Listening Effort Through Depth of Processing in School-Age Children. Ear and Hearing, 2017, 38, 568-576.	1.0	14
51	APEX/SPIN: a free test platform to measure speech intelligibility. International Journal of Audiology, 2017, 56, 137-143.	0.9	3
52	Template Subtraction to Remove CI Stimulation Artifacts in Auditory Steady-State Responses in CI Subjects. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25, 1322-1331.	2.7	14
53	Masked speech perception across the adult lifespan: Impact of age and hearing impairment. Hearing Research, 2017, 344, 109-124.	0.9	71
54	Characterization of cochlear implant artifacts in electrically evoked auditory steady-state responses. Biomedical Signal Processing and Control, 2017, 31, 127-138.	3.5	30

#	Article	IF	CITATIONS
55	Aging Affects Neural Synchronization to Speech-Related Acoustic Modulations. Frontiers in Aging Neuroscience, 2016, 8, 133.	1.7	80
56	Auditory steady-state responses in cochlear implant users: Effect of modulation frequency and stimulation artifacts. Hearing Research, 2016, 335, 149-160.	0.9	39
57	High Standard Competencies for Teachers of the Deaf and Other Qualified Professionals. , 2016, , 135-170.		1
58	Assessing temporal modulation sensitivity using electrically evoked auditory steady state responses. Hearing Research, 2015, 324, 37-45.	0.9	22
59	What can we expect of normally-developing children implanted at a young age with respect to their auditory, linguistic and cognitive skills?. Hearing Research, 2015, 322, 171-179.	0.9	66
60	Development and validation of the Leuven intelligibility sentence test with male speaker (LIST-m). International Journal of Audiology, 2014, 53, 55-59.	0.9	11
61	Exploring the sensitivity of speech-in-noise tests for noise-induced hearing loss. International Journal of Audiology, 2014, 53, 199-205.	0.9	23
62	Development of a Dutch matrix sentence test to assess speech intelligibility in noise. International Journal of Audiology, 2014, 53, 760-763.	0.9	59
63	A crucial role for the cortico-striato-cortical loop in the pathogenesis of stroke-related neurogenic stuttering. Human Brain Mapping, 2013, 34, 2103-2112.	1.9	39
64	Expressive vocabulary, morphology, syntax and narrative skills in profoundly deaf children after early cochlear implantation. Research in Developmental Disabilities, 2013, 34, 2008-2022.	1.2	125
65	Narrative spoken language skills in severely hearing impaired school-aged children with cochlear implants. Research in Developmental Disabilities, 2013, 34, 3833-3846.	1.2	35
66	The Polarity Sensitivity of the Electrically Stimulated Human Auditory Nerve Measured at the Level of the Brainstem. JARO - Journal of the Association for Research in Otolaryngology, 2013, 14, 359-377.	0.9	52
67	Efficient Hearing Screening in Noise-Exposed Listeners Using the Digit Triplet Test. Ear and Hearing, 2013, 34, 773-778.	1.0	43
68	Comparison of three types of French speech-in-noise tests: A multi-center study. International Journal of Audiology, 2012, 51, 164-173.	0.9	104
69	Predictors of Spoken Language Development Following Pediatric Cochlear Implantation. Ear and Hearing, 2012, 33, 617-639.	1.0	167
70	Hearing Disability Measured by the Speech, Spatial, and Qualities of Hearing Scale in Clinically Normal-Hearing and Hearing-Impaired Middle-Aged Persons, and Disability Screening by Means of a Reduced SSQ (the SSQ5). Ear and Hearing, 2012, 33, 615-616.	1.0	85
71	Effect of Pediatric Bilateral Cochlear Implantation on Language Development. JAMA Pediatrics, 2012, 166, 28.	3.6	110
72	Perception of Mandarin Chinese with cochlear implants using enhanced temporal pitch cues. Hearing Research, 2012, 285, 1-12.	0.9	35

#	Article	IF	CITATIONS
73	Spread of excitation varies for different electrical pulse shapes and stimulation modes in cochlear implants. Hearing Research, 2012, 290, 21-36.	0.9	35
74	Evaluating the Noise in Electrically Evoked Compound Action Potential Measurements in Cochlear Implants. IEEE Transactions on Biomedical Engineering, 2012, 59, 1912-1923.	2.5	9
75	Functional benefit of the boneâ€anchored hearing aid with different auditory profiles: objective and subjective measures. Clinical Otolaryngology, 2011, 36, 114-120.	0.6	26
76	A one year prospective study of neurogenic stuttering following stroke: Incidence and co-occurring disorders. Journal of Communication Disorders, 2011, 44, 678-687.	0.8	35
77	Binaural Unmasking of Multi-channel Stimuli in Bilateral Cochlear Implant Users. JARO - Journal of the Association for Research in Otolaryngology, 2011, 12, 659-670.	0.9	11
78	Comparison of fluctuating maskers for speech recognition tests. International Journal of Audiology, 2011, 50, 2-13.	0.9	59
79	Earlier Intervention Leads to Better Sound Localization in Children with Bilateral Cochlear Implants. Audiology and Neuro-Otology, 2010, 15, 7-17.	0.6	89
80	Forward-masking patterns produced by symmetric and asymmetric pulse shapes in electric hearing. Journal of the Acoustical Society of America, 2010, 127, 326-338.	0.5	28
81	Heritability of audiometric shape parameters and familial aggregation of presbycusis in an elderly Flemish population. Hearing Research, 2010, 265, 1-10.	0.9	18
82	Polarity effects on neural responses of the electrically stimulated auditory nerve at different cochlear sites. Hearing Research, 2010, 269, 146-161.	0.9	69
83	Threshold predictions of different pulse shapes using a human auditory nerve fibre model containing persistent sodium and slow potassium currents. Hearing Research, 2010, 269, 12-22.	0.9	30
84	Spatial Speech Perception Benefits in Young Children With Normal Hearing and Cochlear Implants. Ear and Hearing, 2010, 31, 702-713.	1.0	79
85	Improved fundamental frequency coding in cochlear implant signal processing. Journal of the Acoustical Society of America, 2009, 125, 2260-2271.	0.5	45
86	Bilateral Cochlear Implants in Children: Binaural Unmasking. Audiology and Neuro-Otology, 2009, 14, 240-247.	0.6	31
87	Three-Year Postimplantation Auditory Outcomes in Children with Sequential Bilateral Cochlear Implantation. Annals of Otology, Rhinology and Laryngology, 2009, 118, 336-344.	0.6	37
88	Subjective Benefits of Sequential Bilateral Cochlear Implantation in Young Children after 18 Months of Implant Use. Orl, 2009, 71, 112-121.	0.6	24
89	Audiometric shape and presbycusis. International Journal of Audiology, 2009, 48, 222-232.	0.9	67
90	Functional outcome of sequential bilateral cochlear implantation in young children: 36 months postoperative results. International Journal of Pediatric Otorhinolaryngology, 2009, 73, 723-730.	0.4	34

#	Article	IF	CITATIONS
91	Acquired stuttering in a 16-year-old boy. Journal of Neurolinguistics, 2009, 22, 427-435.	0.5	8
92	Sound Localization, Sound Lateralization, and Binaural Masking Level Differences in Young Children with Normal Hearing. Ear and Hearing, 2009, 30, 178-190.	1.0	94
93	APEX 3: a multi-purpose test platform for auditory psychophysical experiments. Journal of Neuroscience Methods, 2008, 172, 283-293.	1.3	203
94	Higher Sensitivity of Human Auditory Nerve Fibers to Positive Electrical Currents. JARO - Journal of the Association for Research in Otolaryngology, 2008, 9, 241-251.	0.9	103
95	Modelling relations between sensory processing, speech perception, orthographic and phonological ability, and literacy achievement. Brain and Language, 2008, 106, 29-40.	0.8	140
96	Alternative pulse shapes in electrical hearing. Hearing Research, 2008, 242, 154-163.	0.9	50
97	A clinician survey of speech and non-speech characteristics of neurogenic stuttering. Journal of Fluency Disorders, 2008, 33, 1-23.	0.7	46
98	LIST and LINT: Sentences and numbers for quantifying speech understanding in severely impaired listeners for Flanders and the Netherlands. International Journal of Audiology, 2008, 47, 348-355.	0.9	182
99	Speech Understanding in Background Noise with the Two-Microphone Adaptive Beamformer BEAMâ,,¢ in the Nucleus Freedomâ,,¢ Cochlear Implant System. Ear and Hearing, 2007, 28, 62-72.	1.0	139
100	Hearing benefits of second-side cochlear implantation in two groups of children. International Journal of Pediatric Otorhinolaryngology, 2007, 71, 1855-1863.	0.4	52
101	Speech perception in preschoolers at family risk for dyslexia: Relations with low-level auditory processing and phonological ability. Brain and Language, 2007, 101, 19-30.	0.8	67
102	Auditory processing, speech perception and phonological ability in pre-school children at high-risk for dyslexia: A longitudinal study of the auditory temporal processing theory. Neuropsychologia, 2007, 45, 1608-1620.	0.7	132
103	A Dual-Process Integrator–Resonator Model of the Electrically Stimulated Human Auditory Nerve. JARO - Journal of the Association for Research in Otolaryngology, 2007, 8, 84-104.	0.9	25
104	Effects of pulse rate on thresholds and loudness of biphasic and alternating monophasic pulse trains in electrical hearing. Hearing Research, 2006, 220, 49-60.	0.9	24
105	Asymmetric Pulses in Cochlear Implants: Effects of Pulse Shape, Polarity, and Rate. JARO - Journal of the Association for Research in Otolaryngology, 2006, 7, 253-266.	0.9	104
106	Coherent motion detection in preschool children at family risk for dyslexia. Vision Research, 2006, 46, 527-535.	0.7	29
107	Auditory temporal information processing in preschool children at family risk for dyslexia: Relations with phonological abilities and developing literacy skills. Brain and Language, 2006, 97, 64-79.	0.8	78
108	A flexible auditory research platform using acoustic or electric stimuli for adults and young children. Journal of Neuroscience Methods, 2005, 142, 131-136.	1.3	58

#	Article	IF	CITATIONS
109	Normalization and feasibility of speech understanding tests for Dutch speaking toddlers. Speech Communication, 2005, 47, 169-181.	1.6	6
110	Effects of waveform shape on human sensitivity to electrical stimulation of the inner ear. Hearing Research, 2005, 200, 73-86.	0.9	41
111	Effect of inter-phase gap on the sensitivity of cochlear implant users to electrical stimulation. Hearing Research, 2005, 205, 210-224.	0.9	62
112	Pitch of amplitude-modulated irregular-rate stimuli in acoustic and electric hearing. Journal of the Acoustical Society of America, 2003, 114, 1516-1528.	0.5	21
113	Temporal pitch mechanisms in acoustic and electric hearing. Journal of the Acoustical Society of America, 2002, 112, 621-633.	0.5	85
114	Psychophysical evidence for a general temporal processing deficit in children with dyslexia. NeuroReport, 2001, 12, 3603-3607.	0.6	94
115	Comparison of Procedures to Determine Electrical Stimulation Thresholds in Cochlear Implant Users. Ear and Hearing, 2001, 22, 528-538.	1.0	10
116	Gap detection in single- and multiple-channel stimuli by LAURA cochlear implantees. Journal of the Acoustical Society of America, 1999, 106, 1925-1939.	0.5	25
117	Speech Intelligibility in Noisy Environments with One- and Two-microphone Hearing Aids. International Journal of Audiology, 1999, 38, 91-98.	0.9	43
118	Natural Vowel and Consonant Recognition by Laura Cochlear Implantees. Ear and Hearing, 1999, 20, 89-103.	1.0	55
119	Discrimination of single and complex consonant–vowel―and vowel–consonantâ€like formant transitions. Journal of the Acoustical Society of America, 1995, 98, 1304-1312.	0.5	18
120	Frequency and duration discrimination of short firstâ€formant speechlike transitions. Journal of the Acoustical Society of America, 1994, 95, 502-511.	0.5	12