Weihai Ni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5420708/publications.pdf

Version: 2024-02-01

63 5,225 32 62
papers citations h-index g-index

64 64 64 7607
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Single-particle spectroscopic investigation on the scattering spectrum of Au@MoS2 coreâ^'shell nanosphere heterostructure. Physical Chemistry Chemical Physics, 2022, , .	2.8	1
2	DNA-Assembled Chiral Satellite-Core Nanoparticle Superstructures: Two-State Chiral Interactions from Dynamic and Static Conformations. Nano Letters, 2022, 22, 4784-4791.	9.1	10
3	Enhancement of interfacial catalysis in a triphase reactor using oxygen nanocarriers. Nano Research, 2021, 14, 172-176.	10.4	9
4	4.9% Au stabilizes Ag in an atomically homogenous bimetallic alloy for anisotropic nanocrystals with enhanced stability under light irradiation. Nanoscale, 2021, 13, 10335-10341.	5 . 6	2
5	Gold Nanorod@Ruthenium Oxide Core–Shell Heterostructures: Synthesis, Singleâ€Particle Characterizations, and Enhanced Hot Electron Generation. Advanced Optical Materials, 2021, 9, 2002136.	7.3	4
6	Mapping Hot Electron Response of Individual Gold Nanocrystals on a TiO ₂ Photoanode. Nano Letters, 2020, 20, 2423-2431.	9.1	44
7	<i>In situ</i>) monitoring of silver adsorption on assembled gold nanorods by surface-enhanced Raman scattering. Nanotechnology, 2020, 31, 295601.	2.6	8
8	Plasmonic thermochromism based on a reversible redox reaction of Ag ⁺ /Ag on Au nanorods. Nanoscale, 2020, 12, 7301-7308.	5 . 6	3
9	Fano-like chiroptical response in plasmonic heterodimer nanostructures. Physical Chemistry Chemical Physics, 2020, 22, 3604-3610.	2.8	7
10	Collective resonance in helical superstructures of gold nanorods. Physical Review B, 2020, 101, .	3.2	3
11	Tailoring optical cross sections of gold nanorods at a target plasmonic resonance wavelength using bromosalicylic acid. RSC Advances, 2019, 9, 16028-16034.	3.6	5
12	Fabrication and Broadband Upconversion Luminescence of Au@TiO ₂ :Yb, Er Core-Shell Nanostructures. Chemistry Letters, 2019, 48, 651-653.	1.3	5
13	Reconfigurable Plasmonic Diastereomers Assembled by DNA Origami. ACS Nano, 2019, 13, 13702-13708.	14.6	66
14	Exponential Dependence of Photocatalytic Activity on Linker Chain Length of Au-Linker-Cu2O Plasmonic Photocatalysts with Sub-nanometer Precision. Catalysis Letters, 2018, 148, 3363-3369.	2.6	4
15	Gold nanorod@iron oxide core–shell heterostructures: synthesis, characterization, and photocatalytic performance. Nanoscale, 2017, 9, 3925-3933.	5. 6	43
16	Emergent phases in a compass chain with multisite interactions. Physical Review B, 2017, 95, .	3.2	9
17	Controllable Biosynthesis and Properties of Gold Nanoplates Using Yeast Extract. Nano-Micro Letters, 2017, 9, 5.	27.0	42
18	Metal Adsorbate-Induced Plasmon Damping in Gold Nanorods: The Difference Between Metals. Nano, 2016, 11, 1650099.	1.0	4

#	Article	IF	Citations
19	Massively Screening the Temporal Spectra of Single Nanoparticles to Uncover the Mechanism of Nanosynthesis. Small, 2016, 12, 5049-5057.	10.0	5
20	2D Confined-Space Assisted Growth of Molecular-Level-Thick Polypyrrole Sheets with High Conductivity and Transparency. Macromolecular Rapid Communications, 2016, 37, 590-596.	3.9	9
21	Rapid Seedless Synthesis of Gold Nanoplates with Microscaled Edge Length in a High Yield and Their Application in SERS. Nano-Micro Letters, 2016, 8, 328-335.	27.0	18
22	"Hot spots―growth on single nanowire controlled by electric charge. Nanoscale, 2016, 8, 12029-12034.	5.6	6
23	Au/NaYF ₄ : Yb,Er Binary Superparticles: Synthesis and Optical Properties. Israel Journal of Chemistry, 2016, 56, 242-248.	2.3	10
24	Dispersive Plasmon Damping in Single Gold Nanorods by Platinum Adsorbates. Small, 2016, 12, 5081-5089.	10.0	11
25	Chainlike assembly of oleic acid-capped NaYF ₄ :Yb,Er nanoparticles and their fixing by silica encapsulation. RSC Advances, 2016, 6, 62019-62023.	3.6	1
26	Site-Specific Surface Functionalization of Gold Nanorods Using DNA Origami Clamps. Journal of the American Chemical Society, 2016, 138, 1764-1767.	13.7	84
27	Direct coating of mesoporous titania on CTAB-capped gold nanorods. Nanoscale, 2016, 8, 5417-5421.	5.6	26
28	Strong Chiroptical Activities in Gold Nanorod Dimers Assembled Using DNA Origami Templates. ACS Photonics, 2015, 2, 392-397.	6.6	63
29	Tuning the structural asymmetries of three-dimensional gold nanorod assemblies. Chemical Communications, 2015, 51, 13627-13629.	4.1	24
30	Role of Bromide in Hydrogen Peroxide Oxidation of CTAB-Stabilized Gold Nanorods in Aqueous Solutions. Langmuir, 2015, 31, 4072-4077.	3.5	56
31	Surface-enhanced Raman scattering from AgNP–graphene–AgNP sandwiched nanostructures. Nanoscale, 2015, 7, 17529-17537.	5.6	37
32	Au Nanorod Helical Superstructures with Designed Chirality. Journal of the American Chemical Society, 2015, 137, 457-462.	13.7	289
33	Angle-Resolved Plasmonic Properties of Single Gold Nanorod Dimers. Nano-Micro Letters, 2014, 6, 372-380.	27.0	29
34	Circular dichroism from single plasmonic nanostructures with extrinsic chirality. Nanoscale, 2014, 6, 14244-14253.	5.6	90
35	Novel polymer-free iridescent lamellar hydrogel for two-dimensional confined growth of ultrathin gold membranes. Nature Communications, 2014, 5, 3313.	12.8	95
36	DNA Origami-Directed, Discrete Three-Dimensional Plasmonic Tetrahedron Nanoarchitectures with Tailored Optical Chirality. ACS Applied Materials & Samp; Interfaces, 2014, 6, 5388-5392.	8.0	33

#	Article	IF	Citations
37	Bifacial DNA Origami-Directed Discrete, Three-Dimensional, Anisotropic Plasmonic Nanoarchitectures with Tailored Optical Chirality. Journal of the American Chemical Society, 2013, 135, 11441-11444.	13.7	208
38	DNA-Directed Gold Nanodimers with Tailored Ensemble Surface-Enhanced Raman Scattering Properties. ACS Applied Materials & Samp; Interfaces, 2013, 5, 10423-10427.	8.0	27
39	Enhancing Single-Nanoparticle Surface-Chemistry by Plasmonic Overheating in an Optical Trap. Nano Letters, 2012, 12, 4647-4650.	9.1	51
40	Antibonding Plasmon Modes in Colloidal Gold Nanorod Clusters. Langmuir, 2012, 28, 8826-8833.	3.5	27
41	Identification of the Optimal Spectral Region for Plasmonic and Nanoplasmonic Sensing. ACS Nano, 2010, 4, 349-357.	14.6	174
42	Chemical seeded growth of Ag nanoparticle arrays and their application as reproducible SERS substrates. Nano Today, 2010, 5, 21-27.	11.9	109
43	Observing Plasmonicâ^'Molecular Resonance Coupling on Single Gold Nanorods. Nano Letters, 2010, 10, 77-84.	9.1	180
44	Evidence for Hydrogen-Bonding-Directed Assembly of Gold Nanorods in Aqueous Solution. Journal of Physical Chemistry Letters, 2010, 1, 1181-1185.	4.6	81
45	Highly uniform SERS substrates formed by wrinkle-confined drying of gold colloids. Chemical Science, 2010, 1, 174.	7.4	127
46	Effects of Dyes, Gold Nanocrystals, pH, and Metal Ions on Plasmonic and Molecular Resonance Coupling. Journal of the American Chemical Society, 2010, 132, 4806-4814.	13.7	97
47	A General Approach to the Synthesis of Gold–Metal Sulfide Core–Shell and Heterostructures. Angewandte Chemie - International Edition, 2009, 48, 2881-2885.	13.8	191
48	Plasmon Coupling in Clusters Composed of Twoâ€Dimensionally Ordered Gold Nanocubes. Small, 2009, 5, 2111-2119.	10.0	119
49	pHâ€Controlled Reversible Assembly and Disassembly of Gold Nanorods. Small, 2008, 4, 1287-1292.	10.0	256
50	Multifunctional Mesostructured Silica Microspheres from an Ultrasonic Aerosol Spray. Advanced Functional Materials, 2008, 18, 2956-2962.	14.9	53
51	Shape- and Size-Dependent Refractive Index Sensitivity of Gold Nanoparticles. Langmuir, 2008, 24, 5233-5237.	3.5	1,126
52	Coupling between Molecular and Plasmonic Resonances in Freestanding Dyeâ^Gold Nanorod Hybrid Nanostructures. Journal of the American Chemical Society, 2008, 130, 6692-6693.	13.7	179
53	Incorporation of Gold Nanorods and Their Enhancement of Fluorescence in Mesostructured Silica Thin Films. Journal of Physical Chemistry C, 2008, 112, 18895-18903.	3.1	52
54	Tailoring Longitudinal Surface Plasmon Wavelengths, Scattering and Absorption Cross Sections of Gold Nanorods. ACS Nano, 2008, 2, 677-686.	14.6	527

Weihai Ni

#	ARTICLE	IF	CITATION
55	Optical Fiber-Excited Surface Plasmon Resonance Spectroscopy of Single and Ensemble Gold Nanorods. Journal of Physical Chemistry C, 2008, 112, 8105-8109.	3.1	33
56	Fluorescent Mesostructured Polythiophene–Silica Composite Particles Synthesized by in Situ Polymerization of Structure-Directing Monomers. Chemistry of Materials, 2007, 19, 6222-6229.	6.7	25
57	Formation of Gold and Silver Nanoparticle Arrays and Thin Shells on Mesostructured Silica Nanofibers. Advanced Functional Materials, 2007, 17, 3258-3266.	14.9	98
58	Growth of Gold Bipyramids with Improved Yield and Their Curvatureâ€Directed Oxidation. Small, 2007, 3, 2103-2113.	10.0	203
59	Amplified spontaneous emission from an infrared dye doped zirconia-organically modified silicate thin film waveguides. Journal of Sol-Gel Science and Technology, 2007, 44, 53-57.	2.4	6
60	Emission enhancement from metallodielectric-capped ZnO films. Journal of Applied Physics, 2006, 100, 026103.	2.5	86
61	Near infrared distributed feedback lasers based on LDS dye-doped zirconia-organically modified silicate channel waveguides. Optics Express, 2005, 13, 1643.	3.4	20
62	Amplification of optical pulse signal using chirped fiber grating., 2002,,.		0
63	Enhancement of Hot Electron Generation in Colloidal Plasmonic Nanocrystals by Adsorption of Pt Clusters. Advanced Optical Materials, 0, , 2102720.	7.3	2