Liang Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5420532/publications.pdf

Version: 2024-02-01

		218677	302126
69	1,848	26	39
papers	citations	h-index	g-index
69	69	69	771
09	09	09	//1
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Evolution mechanisms of charge weld during porthole die extrusion of ZK60 Mg profile. Journal of Materials Processing Technology, 2022, 300, 117401.	6.3	5
2	Aging precipitation and its effects on mechanical properties of TiB2 particulate reinforced 7075Al composite. Materials Science & Degramp: Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 837, 142742.	5.6	5
3	Experimental Study and Optimization on Solution and Artificial Aging of Cold-Rolled 2024 Al Alloy Sheet. Journal of Materials Engineering and Performance, 2022, 31, 5419-5431.	2.5	4
4	Effect of stress-aging treatment on the mechanical and corrosion properties of Alâ^'Znâ^'Mgâ^'Cu alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 838, 142791.	5 . 6	30
5	Effects of TiB2 particle and local aspect ratio on microstructure and mechanical properties of an I-shaped TiB2/6061Al composite profile. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 846, 143284.	5.6	7
6	Effects of artificial aging on precipitation behavior, mechanical properties and corrosion resistance of Si3N4/6061Al composite fabricated by sintering and hot extrusion processes. Journal of Materials Processing Technology, 2022, 306, 117644.	6.3	5
7	Fabrication and strengthening mechanism of dual-phased and bimodal-sized (Si3N4pÂ+ÂTiB2p)/6061Al hybrid composite. Materials and Design, 2022, 220, 110872.	7.0	9
8	Investigation on microstructure and mechanical properties of hot-rolled AZ31 Mg alloy with various cryogenic treatments. Journal of Materials Research and Technology, 2022, 19, 4557-4570.	5.8	10
9	A comprehensive analysis on microstructure evolution of Mg-5.65Zn-0.66Zr alloy during hot deformation. Journal of Magnesium and Alloys, 2021, 9, 520-531.	11.9	18
10	Formation of abnormal coarse grains and its effects on corrosion behaviors of solution treated ZK60 Mg alloy. Corrosion Science, 2021, 180, 109201.	6.6	23
11	Improving mechanical anisotropy and corrosion resistance of extruded AA7075 alloy by warm cross rolling and annealing. Journal of Alloys and Compounds, 2021, 863, 158725.	5.5	21
12	Effects of solution and aging treatments on the microstructure and mechanical properties of cold rolled 2024 Al alloy sheet. Journal of Materials Research and Technology, 2021, 12, 1126-1142.	5 . 8	25
13	Numerical and experimental study on extrusion of ZK60 Mg alloy using billet with temperature gradient. Journal of Materials Research and Technology, 2021, 14, 3018-3028.	5 . 8	5
14	Investigation on peripheral coarse grains and precipitation behavior of in-situ TiB2/Al–Cu–Mg composites with various Mg contents. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2021, 826, 142000.	5 . 6	7
15	Investigation on corrosion behavior and mechanical properties of an extruded Mg-Zn-Al-Sn-Mn alloy. Materials Characterization, 2021, 180, 111439.	4.4	16
16	Strengthening mechanism and anisotropy of mechanical properties of Si3N4p/Al-Mg-Si composites fabricated by sintering and extrusion. Materials and Design, 2021, 210, 110111.	7.0	9
17	Microstructure characterization and corrosion behavior of hollow ZK60 Mg profile containing longitudinal welds. Corrosion Science, 2021, 193, 109875.	6.6	13
18	Effects of annealing treatment on the microstructure and corrosion behavior of hot rolled AZ31 Mg alloy. Journal of Materials Research and Technology, 2021, 15, 4800-4812.	5 . 8	24

#	Article	IF	CITATIONS
19	Multi-objective optimization and experimental investigation on hot extruded plate of high strength Al-Zn-Mg alloy. Journal of Materials Research and Technology, 2020, 9, 507-519.	5.8	14
20	Interface microstructure evolution and mechanical properties of the extruded fiber-reinforced aluminum-based composite bar. Materials and Design, 2020, 188, 108446.	7.0	17
21	Improvement in mechanical properties of Al-Zn-Mg alloy by applying electric pulse during hot extrusion. Journal of Materials Research and Technology, 2020, 9, 1210-1220.	5.8	6
22	Formation mechanism of abnormal coarse grains on weld seam of extruded ZK60 alloy and the effects on mechanical properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 773, 138718.	5.6	21
23	Response of mechanical properties and corrosion behavior of Al–Zn–Mg alloy treated by aging and annealing: A comparative study. Journal of Alloys and Compounds, 2020, 848, 156561.	5.5	30
24	Effects of artificial aging on microstructure, mechanical properties and stress corrosion cracking of a novel high strength 7A99 Al alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 780, 139217.	5.6	36
25	Achieving three-layered Al/Mg/Al sheet via combining porthole die co-extrusion and hot forging. Journal of Magnesium and Alloys, 2020, 8, 654-666.	11.9	34
26	Formation mechanism and evolution of surface coarse grains on a ZK60 Mg profile extruded by a porthole die. Journal of Materials Science and Technology, 2020, 47, 88-102.	10.7	29
27	Effects of solution treatment on the microstructure and mechanical properties of naturally aged EN AW 2024 Al alloy sheet. Journal of Alloys and Compounds, 2020, 824, 153943.	5.5	32
28	Influence of homogenization treatment on microstructure and mechanical properties of Al-Zn-Mg alloy extruded by porthole die. Materials Characterization, 2020, 161, 110148.	4.4	13
29	Microstructure evolution, plastic anisotropy, and intergranular corrosion of Al-Mg-Si sheet processed through a combination of hot extrusion and cold rolling. Materials Characterization, 2020, 164, 110299.	4.4	17
30	Investigation on microstructure and mechanical properties of in-situ TiB2/Al–Cu–Mg composite profile fabricated by porthole die extrusion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 786, 139449.	5.6	15
31	Influence of aging treatment on the microstructure, mechanical properties and anisotropy of hot extruded Al-Mg-Si plate. Materials and Design, 2019, 182, 107999.	7.0	33
32	Evolution of grain structure, micro-texture and second phase during porthole die extrusion of Al–Zn–Mg alloy. Materials Characterization, 2019, 158, 109953.	4.4	24
33	Investigation on microstructure and mechanical properties of Al–5.50Zn–2.35Mg–1.36Cu alloy fabricated by hot extrusion process. Journal of Materials Research, 2019, 34, 3151-3162.	2.6	5
34	Microstructure and mechanical properties of hot extruded Mg-8.89Li-0.96Zn alloy. Results in Physics, 2019, 13, 102148.	4.1	8
35	Influence of extrusion parameters on microstructure, texture, and second-phase particles in an Al-Mg-Si alloy. Journal of Materials Processing Technology, 2019, 270, 323-334.	6.3	34
36	Correlation between homogenization treatment and subsequent hot extrusion of Al–Mg–Si alloy. Journal of Materials Science, 2019, 54, 9843-9856.	3.7	21

#	Article	IF	CITATIONS
37	Microstructure, mechanical properties and welding quality evaluation of longitudinal welds in hollow magnesium alloy profiles extruded at different ram speeds. Materials Characterization, 2019, 151, 414-428.	4.4	7
38	Grain refinement and strength enhancing of hot extruded Mg alloy by application of electric pulse. Materials Letters, 2019, 241, 104-107.	2.6	9
39	Study on Al/Mg/Al sheet fabricated by combination of porthole die co-extrusion and subsequent hot rolling. Journal of Alloys and Compounds, 2019, 784, 727-738.	5.5	53
40	Microstructures of longitudinal/transverse welds and back-end defects and their influences on the corrosion resistance and mechanical properties of aluminum alloy extrusion profiles. Journal of Materials Processing Technology, 2019, 267, 1-16.	6.3	17
41	Microstructure evolution of AZ91 alloy during hot extrusion process with various ram velocity. Vacuum, 2018, 150, 136-143.	3.5	22
42	Microstructure and mechanical properties of Mg-Al-Zn alloy extruded by porthole die with different initial billets. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 718, 390-397.	5 . 6	29
43	Fabrication of Al/Mg/Al laminate by a porthole die co-extrusion process. Journal of Materials Processing Technology, 2018, 258, 165-173.	6.3	46
44	Effects of asymmetric feeder on microstructure and mechanical properties of high strength Al-Zn-Mg alloy by hot extrusion. Journal of Alloys and Compounds, 2018, 749, 293-304.	5 . 5	29
45	Hot deformation behavior and microstructure analysis of 25Cr3Mo3NiNb steel during hot compression tests. Vacuum, 2018, 147, 8-17.	3 . 5	63
46	Microstructure and mechanical properties of Mg-3.0Zn-1.0Sn-0.3Mn-0.3Ca alloy extruded at different temperatures. Journal of Alloys and Compounds, 2018, 732, 257-269.	5 . 5	43
47	Microstructure and texture evolution during porthole die extrusion of Mg-Al-Zn alloy. Journal of Materials Processing Technology, 2018, 259, 346-352.	6.3	36
48	Co-extrusion of dissimilar AA6063/AA7075 by porthole die at various temperatures. Journal of Alloys and Compounds, 2018, 764, 162-169.	5 . 5	21
49	Flow behavior and constitutive description of 20CrMnTi steel at high temperature. Journal of Central South University, 2018, 25, 1013-1024.	3.0	7
50	Dynamic evolution of grain structure and micro-texture along a welding path of aluminum alloy profiles extruded by porthole dies. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2017, 682, 679-690.	5.6	47
51	Microstructural evolution and mechanical properties of welding seams in aluminum alloy profiles extruded by a porthole die under different billet heating temperatures and extrusion speeds. Journal of Materials Processing Technology, 2017, 247, 214-222.	6.3	43
52	Evolution of transverse weld during porthole extrusion of AA7N01 hollow profile. Journal of Materials Processing Technology, 2017, 248, 103-114.	6.3	16
53	Microstructure analysis of an Al-Zn-Mg alloy during porthole die extrusion based on modeling of constitutive equation and dynamic recrystallization. Journal of Alloys and Compounds, 2017, 710, 80-91.	5. 5	90
54	Investigation on longitudinal weld seams during porthole die extrusion process of high strength 7075 aluminum alloy. International Journal of Advanced Manufacturing Technology, 2017, 91, 1897-1907.	3.0	16

#	Article	IF	CITATIONS
55	Microstructure evolution during solution treatment of extruded Al-Zn-Mg profile containing a longitudinal weld seam. Journal of Alloys and Compounds, 2017, 729, 210-221.	5. 5	33
56	Joining of 1060/6063 aluminum alloys based on porthole die extrusion process. Journal of Materials Processing Technology, 2017, 250, 65-72.	6.3	44
57	Study on solid bonding behavior of AZ31 Mg alloy during porthole die extrusion process. International Journal of Advanced Manufacturing Technology, 2017, 93, 2791-2799.	3.0	12
58	Analysis of longitudinal weld seam defects and investigation of solid-state bonding criteria in porthole die extrusion process of aluminum alloy profiles. Journal of Materials Processing Technology, 2016, 237, 31-47.	6.3	88
59	A comparative study of several constitutive models for powder metallurgy tungsten at elevated temperature. Materials and Design, 2016, 90, 91-100.	7.0	50
60	Investigation of interface evolution, microstructure and mechanical properties of solid-state bonding seams in hot extrusion process of aluminum alloy profiles. Journal of Materials Processing Technology, 2016, 230, 153-166.	6.3	58
61	Hot deformation behavior and constitutive modeling of homogenized 6026 aluminum alloy. Materials & Design, 2015, 74, 25-35.	5.1	106
62	Analysis of retarding effect on α to γ transformation in Fe–C alloy by addition of dispersed particles. Progress in Natural Science: Materials International, 2015, 25, 236-241.	4.4	0
63	Effects of ram velocity on pyramid die extrusion of hollow aluminum profile. International Journal of Advanced Manufacturing Technology, 2015, 79, 2117-2125.	3.0	22
64	Evaluation of a pyramid die extrusion for a hollow aluminum profile using FE simulation. Journal of Mechanical Science and Technology, 2015, 29, 2195-2203.	1.5	16
65	Hot Deformation Behaviors and Processing Maps of 2024 Aluminum Alloy in As-cast and Homogenized States. Journal of Materials Engineering and Performance, 2015, 24, 5002-5012.	2.5	38
66	Constitutive analysis of homogenized 7005 aluminum alloy at evaluated temperature for extrusion process. Materials & Design, 2015, 66, 129-136.	5.1	106
67	Analysis and porthole die design for a multi-hole extrusion process of a hollow, thin-walled aluminum profile. International Journal of Advanced Manufacturing Technology, 2014, 74, 383-392.	3.0	43
68	Effects of Second Phase Particle Dispersion on Kinetics of Isothermal Peritectic Transformation in Fe–C Alloy. ISIJ International, 2012, 52, 434-440.	1.4	9
69	Effects of Second Phase Particles on Migration of ^ ^alpha;/^ ^gamma; Interface during Isothermal ^ ^alpha; to ^ ^gamma; Transformation. ISIJ International, 2012, 52, 1841-1847.	1.4	4