
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5420233/publications.pdf Version: 2024-02-01

FDANZ X ROCNED

#	Article	IF	CITATIONS
1	Contrasting the Theory of Planned Behavior With the Value-Belief-Norm Model in Explaining Conservation Behavior1. Journal of Applied Social Psychology, 2005, 35, 2150-2170.	1.3	459
2	The Influence of Short-Term Outdoor Ecology Education on Long-Term Variables of Environmental Perspective. Journal of Environmental Education, 1998, 29, 17-29.	1.0	319
3	A Competence Model for Environmental Education. Environment and Behavior, 2014, 46, 972-992.	2.1	291
4	Promoting connectedness with nature through environmental education. Environmental Education Research, 2013, 19, 370-384.	1.6	287
5	Behavior-based environmental attitude: Development of an instrument for adolescents. Journal of Environmental Psychology, 2007, 27, 242-251.	2.3	237
6	Adolescents' attitudes towards nature and environment: Quantifying the 2-MEV model. The Environmentalist, 2006, 26, 247-254.	0.7	128
7	Learning about Drinking Water: How Important are the Three Dimensions of Knowledge that Can Change Individual Behavior?. Education Sciences, 2014, 4, 213-228.	1.4	126
8	Toward Measuring Adolescent Environmental Perception. European Psychologist, 1999, 4, 139-151.	1.8	124
9	Visualizing the Invisible: Augmented Reality as an Innovative Science Education Scheme. Advanced Science Letters, 2008, 1, 114-122.	0.2	95
10	Climate change education: quantitatively assessing the impact of a botanical garden as an informal learning environment. Environmental Education Research, 2013, 19, 415-429.	1.6	93
11	Empirical evaluation of an educational conservation programme introduced in Swiss secondary schools. International Journal of Science Education, 1999, 21, 1169-1185.	1.0	76
12	ENVIRONMENTAL PERCEPTION OF RURAL AND URBAN PUPILS. Journal of Environmental Psychology, 1997, 17, 111-122.	2.3	72
13	How does a one-day environmental education programme support individual connectedness with nature?. Journal of Biological Education, 2012, 46, 180-187.	0.8	72
14	Environmental perspectives of pupils: the development of an attitude and behaviour scale. The Environmentalist, 1996, 16, 95-110.	0.7	69
15	Effects of a 1-day environmental education intervention on environmental attitudes and connectedness with nature. European Journal of Psychology of Education, 2013, 28, 1077-1086.	1.3	68
16	Environmental Values (2-MEV) and Appreciation of Nature. Sustainability, 2018, 10, 350.	1.6	61
17	Studentâ€oriented versus Teacherâ€centred: The effect of learning at workstations about birds and bird flight on cognitive achievement and motivation. International Journal of Science Education, 2008, 30, 941-959.	1.0	57
18	Teachers' conceptions of nature and environment in 16 countries. Journal of Environmental Psychology, 2009, 29, 407-413.	2.3	57

#	Article	IF	CITATIONS
19	The influence of a residential outdoor education programme to pupil's environmental perception. European Journal of Psychology of Education, 2002, 17, 19-34.	1.3	54
20	Cognitive achievements in identification skills. Journal of Biological Education, 2006, 40, 161-165.	0.8	53
21	Measuring adolescent science motivation. International Journal of Science Education, 2016, 38, 434-449.	1.0	53
22	From STEM to STEAM: Cracking the Code? How Creativity & amp; Motivation Interacts with Inquiry-based Learning. Creativity Research Journal, 2019, 31, 284-295.	1.7	53
23	Learning at workstations in two different environments: A museum and a classroom. Studies in Educational Evaluation, 2010, 36, 14-19.	1.2	51
24	Social Desirability, Environmental Attitudes, and General Ecological Behaviour in Children. International Journal of Science Education, 2013, 35, 713-730.	1.0	50
25	Environmental Perception: Factor Profiles of Extreme Groups. European Psychologist, 2002, 7, 225-237.	1.8	50
26	Learning in a gene technology laboratory with educational focus: Results of a teaching unit with authentic experiments. Biochemistry and Molecular Biology Education, 2007, 35, 28-39.	0.5	47
27	Evaluating Environmental Knowledge Dimension Convergence to Assess Educational Programme Effectiveness. International Journal of Science Education, 2015, 37, 684-702.	1.0	47
28	From STEM to STEAM: How to Monitor Creativity. Creativity Research Journal, 2018, 30, 233-240.	1.7	46
29	Pupils' Interest Before, During, and After a Curriculum Dealing With Ecological Topics and its Relationship With Achievement. Educational Research and Evaluation, 2007, 13, 463-478.	0.9	40
30	The influence of situational emotions on the intention for sustainable consumer behaviour in a student-centred intervention. Environmental Education Research, 2013, 19, 747-764.	1.6	40
31	Exploitative vs. appreciative use of nature – Two interpretations of utilization and their relevance for environmental education. Studies in Educational Evaluation, 2014, 41, 106-112.	1.2	40
32	Modelling environmental literacy with environmental knowledge, values and (reported) behaviour. Studies in Educational Evaluation, 2020, 65, 100863.	1.2	40
33	Gender, age and subject matter: impact on teachers' ecological values. The Environmentalist, 2010, 30, 111-122.	0.7	39
34	Environmental Perspectives of Danish and Bavarian Pupils: towards a methodological framework. Scandinavian Journal of Educational Research, 1997, 41, 53-71.	1.0	38
35	Risk-taking and environmental perception. The Environmentalist, 2000, 20, 49-62.	0.7	37
36	Human visual perception — learning at workstations. Journal of Biological Education, 2005, 40, 32-37.	0.8	35

#	Article	IF	CITATIONS
37	How Creativity in STEAM Modules Intervenes with Self-Efficacy and Motivation. Education Sciences, 2020, 10, 70.	1.4	35
38	Efficacy of Two Different Instructional Methods Involving Complex Ecological Content. International Journal of Science and Mathematics Education, 2009, 7, 315-337.	1.5	33
39	Concept map structure, gender and teaching methods: an investigation of students' science learning. Educational Research, 2009, 51, 425-438.	0.9	33
40	Cognitive learning in authentic environments in relation to green attitude preferences. Studies in Educational Evaluation, 2015, 44, 9-15.	1.2	33
41	Instructional Efficiency of Changing Cognitive Load in an Outâ€ofâ€5chool Laboratory. International Journal of Science Education, 2010, 32, 829-844.	1.0	32
42	Two ways of acquiring environmental knowledge: by encountering living animals at a beehive and by observing bees via digital tools. International Journal of Science Education, 2017, 39, 723-741.	1.0	31
43	How to sustainably increase students' willingness to protect pollinators. Environmental Education Research, 2018, 24, 461-473.	1.6	30
44	Cognitive Achievement and Motivation in Handsâ€on and Teacherâ€Centred Science Classes: Does an additional handsâ€on consolidation phase (concept mapping) optimise cognitive learning at work stations?. International Journal of Science Education, 2010, 32, 849-870.	1.0	29
45	Learning About Genetic Engineering in an Outreach Laboratory: Influence of Motivation and Gender on Students' Cognitive Achievement. International Journal of Science Education, Part B: Communication and Public Engagement, 2016, 6, 166-187.	0.9	28
46	Short- and long-term outreach at the zoo: cognitive learning about marine ecological and conservational issues. Environmental Education Research, 2017, 23, 252-268.	1.6	28
47	Environmental perception of French and some Western European secondary school students. European Journal of Psychology of Education, 2002, 17, 3-18.	1.3	27
48	Effects of Students' Effort Scores in a Structured Inquiry Unit on Long-Term Recall Abilities of Content Knowledge. Education Research International, 2015, 2015, 1-11.	0.6	27
49	A New Two-Step Approach for Hands-On Teaching of Gene Technology: Effects on Students' Activities During Experimentation in an Outreach Gene Technology Lab. Research in Science Education, 2011, 41, 505-523.	1.4	25
50	The impact of science motivation on cognitive achievement within a 3-lesson unit about renewable energies. Studies in Educational Evaluation, 2016, 50, 14-21.	1.2	25
51	Young people's cognitive achievement as fostered by hands-on-centred environmental education. Environmental Education Research, 2016, 22, 943-957.	1.6	25
52	Is creativity, hands-on modeling and cognitive learning gender-dependent?. Thinking Skills and Creativity, 2019, 31, 91-102.	1.9	25
53	Environmental literacy in practice: education on tropical rainforests and climate change. Environment, Development and Sustainability, 2018, 20, 2079-2094.	2.7	25
54	Teaching Gene Technology in an Outreach Lab: Students' Assigned Cognitive Load Clusters and the Clusters' Relationships to Learner Characteristics, Laboratory Variables, and Cognitive Achievement. Research in Science Education, 2013, 43, 141-161.	1.4	23

#	Article	IF	CITATIONS
55	Environmental values and environmental concern. Environmental Education Research, 2019, 25, 1570-1581.	1.6	23
56	The Relation between Knowledge Acquisition and Environmental Values within the Scope of a Biodiversity Learning Module. Sustainability, 2020, 12, 2036.	1.6	23
57	Green Awareness in Action—How Energy Conservation Action Forces on Environmental Knowledge, Values and Behaviour in Adolescents' School Life. Sustainability, 2020, 12, 955.	1.6	23
58	Conceptual Change in Students' Molecular Biology Education: Tilting at Windmills?. Journal of Educational Research, 2011, 104, 7-18.	0.8	22
59	Environmental perceptions of Irish and Bavarian pupils: an empirical study. The Environmentalist, 1998, 18, 27-38.	0.7	21
60	How Environmental Attitudes Interact with Cognitive Learning in a Science Lesson Module. Education Research International, 2016, 2016, 1-7.	0.6	20
61	Enriching Students' Education Using Interactive Workstations at a Salt Mine Turned Science Center. Journal of Chemical Education, 2011, 88, 510-515.	1.1	16
62	Cognitive Influences of Students' Alternative Conceptions Within a Hands-on Gene Technology Module. Journal of Educational Research, 2011, 104, 158-170.	0.8	16
63	A New Role Change Approach in Pre-service Teacher Education for Developing Pedagogical Content Knowledge in the Context of a Student Outreach Lab. Research in Science Education, 2016, 46, 743-766.	1.4	16
64	PATHWAYS – A Case of Large-Scale Implementation of Evidence-Based Practice in Scientific Inquiry-Based Science Education. International Journal of Higher Education, 2017, 6, 8.	0.2	16
65	Between Environmental Utilization and Protection: Adolescent Conceptions of Biodiversity. Sustainability, 2019, 11, 4517.	1.6	16
66	Between Science Education and Environmental Education: How Science Motivation Relates to Environmental Values. Sustainability, 2020, 12, 1968.	1.6	16
67	Instructional efficiency of different discussion approaches in an outreach laboratory: Teacher-guided versus student-centered. Journal of Educational Research, 2016, 109, 27-36.	0.8	15
68	Measuring Environmental Perceptions Grounded on Different Theoretical Models: The 2-Major Environmental Values (2-MEV) Model in Comparison with the New Ecological Paradigm (NEP) Scale. Sustainability, 2019, 11, 1286.	1.6	15
69	International educators' perspectives on the purpose of science education and the relationship between school science and creativity. Research in Science and Technological Education, 2020, 38, 19-41.	1.4	15
70	The supportive role of environmental attitude for learning about environmental issues. Journal of Environmental Psychology, 2022, 81, 101799.	2.3	15
71	How does integrating alternative conceptions into lessons influence pupils' situational emotions and learning achievement?. Journal of Biological Education, 2013, 47, 1-11.	0.8	14
72	To What Extent do Biology Textbooks Contribute to Scientific Literacy? Criteria for Analysing Science-Technology-Society-Environment Issues. Education Sciences, 2015, 5, 255-280.	1.4	14

#	Article	IF	CITATIONS
73	Hypertext or Textbook: Effects on Motivation and Gain in Knowledge. Education Sciences, 2016, 6, 29.	1.4	14
74	Deeper learning as integrated knowledge and fascination for Science. International Journal of Science Education, 2020, 42, 807-834.	1.0	14
75	Student conceptions about the <scp>DNA</scp> structure within a hierarchical organizational level: Improvement by experiment―and computerâ€based outreach learning. Biochemistry and Molecular Biology Education, 2015, 43, 393-402.	0.5	13
76	Introducing Large-Scale Innovation in Schools. Journal of Science Education and Technology, 2016, 25, 541-549.	2.4	13
77	Does the issue of bionics within a student-centered module generate long-term knowledge?. Studies in Educational Evaluation, 2017, 55, 117-124.	1.2	13
78	How teachers' attitudes on GMO relate to their environmental values. Journal of Environmental Psychology, 2018, 57, 1-9.	2.3	13
79	What Germany's University Beginners Think about Water Reuse. Water (Switzerland), 2018, 10, 731.	1.2	13
80	Monitoring a gender gap in interest and social aspects of technology in different age groups. International Journal of Technology and Design Education, 2019, 29, 217-229.	1.7	12
81	Assessing Environmental Attitudes and Cognitive Achievement within 9 Years of Informal Earth Education. Sustainability, 2021, 13, 3622.	1.6	12
82	Conceptions about Drinking Water of 10 th Graders and Undergraduates. Journal of Water Resource and Protection, 2014, 06, 1112-1123.	0.3	12
83	Science teaching based on cognitive load theory: Engaged students, but cognitive deficiencies. Studies in Educational Evaluation, 2012, 38, 127-134.	1.2	11
84	Computer-related self-concept: The impact on cognitive achievement. Studies in Educational Evaluation, 2016, 50, 46-52.	1.2	11
85	How Environmental Values Predict Acquisition of Different Cognitive Knowledge Types with Regard to Forest Conservation. Sustainability, 2018, 10, 2188.	1.6	11
86	Microplastics in the Environment: Raising Awareness in Primary Education. American Biology Teacher, 2020, 82, 478-487.	0.1	11
87	Cognitive Learning about Waste Management: How Relevance and Interest Influence Long-Term Knowledge. Education Sciences, 2020, 10, 102.	1.4	11
88	Instructional Efficiency of Tutoring in an Outreach Gene Technology Laboratory. Research in Science Education, 2013, 43, 1267-1288.	1.4	10
89	A Role-Play-Based Tutor Training in Preservice Teacher Education for Developing Procedural Pedagogical Content Knowledge by Optimizing Tutor–Student Interactions in the Context of an Outreach Lab. Journal of Science Teacher Education, 2019, 30, 461-482.	1.4	10
90	Testing Creativity and Personality to Explore Creative Potentials in the Science Classroom. Research in Science Education, 2022, 52, 1293-1312.	1.4	10

#	Article	IF	CITATIONS
91	Cannot See the Forest for the Trees? Comparing Learning Outcomes of a Field Trip vs. a Classroom Approach. Forests, 2021, 12, 1265.	0.9	10
92	Strengthening Resistance Self-Efficacy: Influence of Teaching Approaches and Gender on Different Consumption Groups. Journal of Drug Education, 2009, 39, 439-457.	0.1	9
93	Implementation of concept mapping to novices: reasons for errors, a matter of technique or content?. Educational Studies, 2010, 36, 47-58.	1.4	9
94	Comparing the Use of Two Different Model Approaches on Students' Understanding of DNA Models. Education Sciences, 2019, 9, 115.	1.4	9
95	Is there deep learning on Mars? STEAM education in an inquiry-based out-of-school setting. Interactive Learning Environments, 2023, 31, 1173-1185.	4.4	9
96	Inspiring Science Learning: Designing the Science Classroom of the Future. Advanced Science Letters, 2011, 4, 3304-3309.	0.2	9
97	Inquiry-based learning and E-learning: how to serve high and low achievers. Smart Learning Environments, 2020, 7, .	4.3	9
98	Association tests and outdoor ecology education. European Journal of Psychology of Education, 1997, 12, 89-102.	1.3	8
99	Ecuadorian students' conceptions and personal experience regarding water management issues / Concepciones y experiencias personales de los estudiantes ecuatorianos sobre la gestión del agua. Psyecology, 2016, 7, 25-63.	1.1	8
100	FutureForest: Promoting Biodiversity Literacy by Implementing Citizen Science in the Classroom. American Biology Teacher, 2020, 82, 234-240.	0.1	8
101	Computer-Aided Learning: Unguided versus Guided Instruction. Advanced Science Letters, 2011, 4, 3310-3316.	0.2	8
102	A Categoryâ€based Video Analysis of Students' Activities in an Outâ€ofâ€school Handsâ€on Gene Technology Lesson. International Journal of Science Education, 2008, 30, 451-467.	1.0	7
103	Is there more than the sewage plant? University freshmen's conceptions of the urban water cycle. PLoS ONE, 2018, 13, e0200928.	1.1	7
104	How fascination for biology is associated with students' learning in a biodiversity citizen science project. Studies in Educational Evaluation, 2020, 66, 100892.	1.2	7
105	Students' Care for Dogs, Environmental Attitudes, and Behaviour. Sustainability, 2020, 12, 1317.	1.6	7
106	Investigations of Modellers and Model Viewers in an Out-of-School Gene Technology Laboratory. Research in Science Education, 2021, 51, 801-822.	1.4	6
107	Conceptual change when growing up: frameset for role models?. International Journal of Adolescence and Youth, 2020, 25, 292-304.	0.9	6
108	Simply InGEN(E)ious! How Creative DNA Modeling Can Enrich Classic Hands-On Experimentation. Journal of Microbiology and Biology Education, 2020, 21, .	0.5	6

#	Article	IF	CITATIONS
109	Conceptions of university students on microplastics in Germany. PLoS ONE, 2021, 16, e0257734.	1.1	6
110	Individual Creativity and Career Choices of Pre-teens in the Context of a Math-Art Learning Event. Open Education Studies, 2021, 3, 147-156.	0.4	6
111	Student-centred anti-smoking education: Comparing a classroom-based and an out-of-school setting. Learning Environments Research, 2010, 13, 147-157.	1.8	5
112	Quantitative Analysis of the Usage of the COSMOS Science Education Portal. Journal of Science Education and Technology, 2011, 20, 333-346.	2.4	5
113	The search for potential origins of a favorable attitude toward nature. Psyecology, 2012, 3, 341-352.	1.1	5
114	How Young "Early Birds―Prefer Preservation, Appreciation and Utilization of Nature. Sustainability, 2018, 10, 4000.	1.6	5
115	Intervention Impact on Young Students' Associations about Wolf and Lynx. Society and Animals, 2019, 27, 544-574.	0.1	5
116	Self-evaluative Scientific Modeling in an Outreach Gene Technology Laboratory. Journal of Science Education and Technology, 2020, 29, 725-739.	2.4	5
117	COVID-19 and lockdown schooling: how digital learning environments influence semantic structures and sustainability knowledge. Discover Sustainability, 2021, 2, 32.	1.4	5
118	Biosphere 2 as an informal learning platform to assess motivation, fascination, and cognitive achievement for sustainability. Studies in Educational Evaluation, 2021, 70, 101061.	1.2	5
119	The relevance of school self-concept and creativity for CLIL outreach learning. Studies in Educational Evaluation, 2022, 73, 101153.	1.2	5
120	A modified refutation text design: effects on instructional efficiency for experts and novices. Educational Research and Evaluation, 2013, 19, 402-425.	0.9	4
121	Measuring the Computer-Related Self-Concept. Journal of Educational Computing Research, 2016, 54, 352-370.	3.6	4
122	BIONICS: An Out-of-School Day at the Zoo. American Biology Teacher, 2018, 80, 429-435.	0.1	4
123	Environmental Values and Technology Preferences of First-Year University Students. Sustainability, 2020, 12, 62.	1.6	4
124	The Effect of Environmental Values on German Primary School Students' Knowledge on Water Supply. Water (Switzerland), 2021, 13, 702.	1.2	4
125	Explore Your Local Biodiversity – How School Grounds Evoke Visions of Sustainability. American Biology Teacher, 2020, 82, 606-613.	0.1	4
126	Knowledge acquisition and environmental values in a microplastic learning module: Does the learning environment matter?. Studies in Educational Evaluation, 2021, 71, 101091.	1.2	4

#	Article	IF	CITATIONS
127	Informal Earth Education: Significant Shifts for Environmental Attitude and Knowledge. Frontiers in Psychology, 2022, 13, .	1.1	4
128	Science-technology-society-environment issues in German and Portuguese biology textbooks: influenced by the socio-cultural context?. International Journal of Science Education, Part B: Communication and Public Engagement, 2018, 8, 266-286.	0.9	3
129	Bringing Out-of-School Learning into the Classroom: Self- versus Peer-Monitoring of Learning Behaviour. Education Sciences, 2020, 10, 284.	1.4	3
130	Environmental Values and Authoritarianism. Psychology Research (Libertyville, Ill), 2012, 2, .	0.0	3
131	The colours of the Higgs boson: a study in creativity and science motivation among high-school students in Italy. Smart Learning Environments, 2021, 8, .	4.3	3
132	Bridging the Gap Towards Flying: Archaeopteryx as a Unique Evolutionary Tool to Inquiry-Based Learning. , 2019, , 149-165.		3
133	Education for Sustainable Development: How Seminar Design and Time Structure of Teacher Professional Development Affect Students' Motivation and Creativity. Education Sciences, 2022, 12, 296.	1.4	3
134	Measuring Students' School Motivation. Education Sciences, 2022, 12, 378.	1.4	3
135	Closing the Gap: Potentials of ESE Distance Teaching. Sustainability, 2022, 14, 8330.	1.6	3
136	Module-Phase-Dependent Development of Pedagogical Content Knowledge: Replicating a Role-Change Approach in Pre-Service Teacher Education in an Outreach Lab. Research in Science Education, 2019, 51, 1177.	1.4	1
137	Learning about waste management: The role of science motivation, preferences in technology and environmental values. Sustainable Futures, 2021, 3, 100054.	1.5	1
138	Green Awareness in Action of Saving Energy in School Life: Modeling Environmental Literacy in Theory and Practice Experience. , 2022, , 3531-3556.		1
139	Hearing: An Inquiry-Based Learning Module Linking Biology & Physics. American Biology Teacher, 2019, 81, 485-489.	0.1	0
140	Green Awareness in Action of Saving Energy in School Life: Modeling Environmental Literacy in Theory and Practice Experience. , 2021, , 1-27.		0
141	Green Awareness in Action of Saving Energy in School Life: Modeling Environmental Literacy in Theory and Practice Experience. , 2021, , 1-26.		0
142	Die Wirkung von Biologieunterricht auf verantwortungsbewusstes Verhalten zu umweltgerechter Nachhaltigkeit (Environmental Literacy). , 2019, , 209-226.		0
143	Wege zum nachhaltigen Umgang mit Kunststoffen: Kernbotschaften sozialwissenschaftlicher Forschung. Gaia, 2022, 31, 51-53.	0.3	0