Shinya Masuda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5420032/publications.pdf

Version: 2024-02-01

1-	600	840776	888059	
17	620	11	17	
papers	citations	h-index	g-index	
18	18	18	597	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	PdAg Nanoparticles Supported on Functionalized Mesoporous Carbon: Promotional Effect of Surface Amine Groups in Reversible Hydrogen Delivery/Storage Mediated by Formic Acid/CO ₂ . ACS Catalysis, 2018, 8, 2277-2285.	11.2	157
2	Phenylamine-functionalized mesoporous silica supported PdAg nanoparticles: a dual heterogeneous catalyst for formic acid/CO ₂ -mediated chemical hydrogen delivery/storage. Chemical Communications, 2017, 53, 4677-4680.	4.1	107
3	Controlled release of hydrogen isotope compounds and tunneling effect in the heterogeneously-catalyzed formic acid dehydrogenation. Nature Communications, 2019, 10, 4094.	12.8	56
4	Palladium Copper Chromium Ternary Nanoparticles Constructed Inâ€situ within a Basic Resin: Enhanced Activity in the Dehydrogenation of Formic Acid. ChemCatChem, 2017, 9, 3456-3462.	3.7	53
5	PdAg nanoparticles supported on resorcinol-formaldehyde polymers containing amine groups: the promotional effect of phenylamine moieties on CO ₂ transformation to formic acid. Journal of Materials Chemistry A, 2019, 7, 16356-16363.	10.3	39
6	Revealing hydrogen spillover pathways in reducible metal oxides. Chemical Science, 2022, 13, 8137-8147.	7.4	39
7	Synthesis of a binary alloy nanoparticle catalyst with an immiscible combination of Rh and Cu assisted by hydrogen spillover on a TiO ₂ support. Chemical Science, 2020, 11, 4194-4203.	7.4	32
8	PdAg nanoparticles and aminopolymer confined within mesoporous hollow carbon spheres as an efficient catalyst for hydrogenation of CO ₂ to formate. Journal of Materials Chemistry A, 2020, 8, 4437-4446.	10.3	31
9	Interconversion of Formate/Bicarbonate for Hydrogen Storage/Release: Improved Activity Following Sacrificial Surface Modification of a Ag@Pd/TiO ₂ Catalyst with a TiO <i>_x</i> Shell. ACS Applied Energy Materials, 2020, 3, 5819-5829.	5.1	27
10	Simple Route for the Synthesis of Highly Active Bimetallic Nanoparticle Catalysts with Immiscible Ru and Ni Combination by utilizing a TiO ₂ Support. ChemCatChem, 2018, 10, 3526-3531.	3.7	26
11	Additive-Free Aqueous Phase Synthesis of Formic Acid by Direct CO2 Hydrogenation over a PdAg Catalyst on a Hydrophilic N-Doped Polymer–Silica Composite Support with High CO2 Affinity. ACS Applied Energy Materials, 2020, 3, 5847-5855.	5.1	22
12	Synthesis of active, robust and cationic Au ₂₅ cluster catalysts on double metal hydroxide by long-term oxidative aging of Au ₂₅ (SR) ₁₈ . Nanoscale, 2022, 14, 3031-3039.	5.6	10
13	Few-nm-sized, phase-pure Au ₅ Sn intermetallic nanoparticles: synthesis and characterization. Dalton Transactions, 2021, 50, 5177-5183.	3.3	5
14	Synergistic Effect in Ir- or Pt-Doped Ru Nanoparticles: Catalytic Hydrogenation of Carbonyl Compounds under Ambient Temperature and H ₂ Pressure. ACS Catalysis, 2021, 11, 10502-10507.	11.2	5
15	Polymer-Stabilized Au ₃₈ Cluster: Atomically Precise Synthesis by Digestive Ripening and Characterization of the Atomic Structure and Oxidation Catalysis. ACS Catalysis, 2022, 12, 6550-6558.	11.2	5
16	Decorating an anisotropic Au ₁₃ core with dendron thiolates: enhancement of optical absorption and photoluminescence. Chemical Communications, 2021, 57, 12159-12162.	4.1	3
17	Chemical Hydrogen Storage and Release Driven by PdAg Alloy Nanoparticle Catalysts. Materia Japan, 2020, 59, 361-365.	0.1	0