Wilfried Uhring

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5419616/publications.pdf Version: 2024-02-01

WILEDIED HUDING

#	Article	IF	CITATIONS
1	Carbon Dioxide Sensing—Biomedical Applications to Human Subjects. Sensors, 2022, 22, 188.	3.8	18
2	Comparison of Time Resolved Optical Turbidity Measurements for Water Monitoring to Standard Real-Time Techniques. Sensors, 2021, 21, 3136.	3.8	3
3	Design and Characterization of an Asynchronous Fixed Priority Tree Arbiter for SPAD Array Readout. Sensors, 2021, 21, 3949.	3.8	1
4	An Active Quenching Circuit for a Native 3D SPAD Pixel in a 28 nm CMOS FDSOI Technology. , 2021, , .		1
5	An Ultrafast Active Quenching Active Reset Circuit with 50% SPAD Afterpulsing Reduction in a 28 nm FD-SOI CMOS Technology Using Body Biasing Technique. Sensors, 2021, 21, 4014.	3.8	5
6	Basics of Micro/Nano Fluidics and Biology. Microtechnology and MEMS, 2020, , 7-87.	0.2	1
7	Time-Resolved fluorescence measurement system for real-time high-throughput microfluidic droplet sorting. , 2020, , .		1
8	Sizing of Lithium-Ion Battery/Supercapacitor Hybrid Energy Storage System for Forklift Vehicle. Energies, 2020, 13, 4518.	3.1	21
9	Design Methodology and Timing Considerations for implementing a TDC on a Cyclone V FPGA Target. , 2020, , .		4
10	A High Dynamic Range High Speed Pixel Operating at 100 Million Frames Per Second. , 2020, , .		0
11	Measuring hemoglobin spectra: searching for carbamino-hemoglobin. Journal of Biomedical Optics, 2020, 25, .	2.6	3
12	Measuring hemoglobin spectra: searching for carbamino-hemoglobin. Journal of Biomedical Optics, 2020, 25, .	2.6	13
13	An Ultrafast Active Quenching Circuit for SPAD in CMOS 28nm FDSOI Technology. , 2020, , .		3
14	Embedded Fluorescence Lifetime Determination for High-Throughput, Low-Photon-Number Applications. Journal of Signal Processing Systems, 2019, 91, 819-831.	2.1	2
15	Study and Influence of Standardized Driving Cycles on the Sizing of Li-Ion Battery / Supercapacitor Hybrid Energy Storage. , 2019, , .		11
16	Body-biasing considerations with SPAD FDSOI: advantages and drawbacks. , 2019, , .		6
17	Real-time, wide-field, and quantitative oxygenation imaging using spatiotemporal modulation of light. Journal of Biomedical Optics, 2019, 24, 1.	2.6	14
18	Single snapshot of optical properties image quality improvement using anisotropic two-dimensional windows filtering. Journal of Biomedical Optics, 2019, 24, 1.	2.6	16

#	Article	IF	CITATIONS
19	Single snapshot imaging of optical properties using a single-pixel camera: a simulation study. Journal of Biomedical Optics, 2019, 24, 1.	2.6	14
20	Real-time optical properties and oxygenation imaging using custom parallel processing in the spatial frequency domain. Biomedical Optics Express, 2019, 10, 3916.	2.9	9
21	Real-time multispectral optical imaging using GPGPU processing. , 2019, , .		Ο
22	Introduction to the special issue on IEEE NEWCAS 2017. Analog Integrated Circuits and Signal Processing, 2018, 97, 395-396.	1.4	0
23	Skew Reduction on a long transmission line using multiple local DLLs for high-speed imagery. , 2018, , .		0
24	An Asynchronous Fixed Priority Arbiter for High througput Time Correlated Single Photon Counting Systems. , 2018, , .		4
25	Modeling the effect of strong magnetic field on n-type MOSFET in strong inversion. , 2018, , .		1
26	A Scalable Architecture for Multi Millions Frames per Second CMOS Sensor With Digital Storage. , 2018, , .		2
27	A 5 Million Frames Per Second 3D Stacked Image Sensor With In-Pixel Digital Storage. , 2018, , .		4
28	Towards sensitive, high-throughput, biomolecular assays based on fluorescence lifetime. Methods and Applications in Fluorescence, 2017, 5, 034002.	2.3	15
29	Improvement in measurements of hydroxyapatite layers by hybrid high dynamic range image processing in white-light interferometry. Materials Today: Proceedings, 2017, 4, S36-S43.	1.8	1
30	A hybrid time to digital converter based on digital delay locked loop and analog time to amplitude converter. , 2017, , .		5
31	Embedded fluorescence lifetime determination for high throughput real-time droplet sorting with microfluidics. , 2017, , .		3
32	A real time 3D video CMOS sensor with time gated photon counting. , 2017, , .		4
33	On the influence of strong magnetic field on MOS transistors. , 2016, , .		4
34	Evaluation of size influence on performance figures of a single photon avalanche diode fabricated in a 180Ânm standard CMOS technology. Analog Integrated Circuits and Signal Processing, 2016, 89, 69-76.	1.4	6
35	High-dynamic-range microscope imaging based on exposure bracketing in full-field optical coherence tomography. Optics Letters, 2016, 41, 1313.	3.3	10
36	Sub-nanosecond gated photon counting for high spatial resolution CMOS imagers. , 2016, , .		2

3

#	Article	IF	CITATIONS
37	High-resolution full-field optical coherence tomography using high dynamic range image processing. Proceedings of SPIE, 2016, , .	0.8	0
38	Impact of laser phase and amplitude noises on streak camera temporal resolution. Review of Scientific Instruments, 2015, 86, 094703.	1.3	1
39	Electrothermal analysis of 3D integrated ultra-fast image sensor with digital frame storage. , 2015, , .		Ο
40	Detection of defects in a transparent polymer with high resolution tomography using white light scanning interferometry and noise reduction. , 2015, , .		7
41	Efficiency improvement of high rate integrated time correlated single photon counting systems by incorporating an embedded FIFO. , 2015, , .		2
42	A single photon avalanche detector in a 180 nm standard CMOS technology. , 2015, , .		7
43	Signal conditioning circuits for 3D-integrated burst image sensors with on-chip A/D conversion. Proceedings of SPIE, 2015, , .	0.8	3
44	Sub-500-ps Temporal Resolution Streak-Mode Optical Sensor. IEEE Sensors Journal, 2015, 15, 6570-6583.	4.7	5
45	Sub-200 fs rms jitter constant fraction discriminator for streak camera triggering. , 2014, , .		1
46	10-ps Resolution hybrid time to digital converter in a 0.18 μm CMOS technology. , 2014, , .		4
47	High-throughput time-correlated single photon counting. Lab on A Chip, 2014, 14, 4338-4343.	6.0	31
48	A time-gated near-infrared spectroscopic imaging device for clinical applications Proceedings of SPIE, 2013, , .	0.8	4
49	200 ps FWHM and 100 MHz repetition rate ultrafast gated camera for optical medical functional imaging. Proceedings of SPIE, 2012, , .	0.8	6
50	A 64 single photon avalanche diode array in 0.18 µm CMOS standard technology with versatile quenching circuit for quick prototyping. , 2012, , .		3
51	A Fully Characterizable Asynchronous Multiphase Delay Generator. IEEE Transactions on Nuclear Science, 2011, 58, 418-425.	2.0	7
52	Streak-mode optical sensor in standard BiCMOS technology. , 2011, , .		3
53	Time-gated near-infrared spectroscopic imaging of brain activation: a simulation proof of concept. Proceedings of SPIE, 2011, , .	0.8	5
54	Integrated streak camera in standard (Bi)CMOS technology. , 2010, , .		5

#	Article	IF	CITATIONS
55	Streak camera in standard (Bi)CMOS (bipolar complementary metal-oxide-semiconductor) technology. Measurement Science and Technology, 2010, 21, 115203.	2.6	10
56	12 × 7.14 GS/s rate time-resolved BiCMOS imager. , 2010, , .		4
57	Integrated Circuit Architectures for High-Speed Time-Resolved Imaging. , 2010, , .		1
58	Architectures and signal reconstruction methods for nanosecond resolution Integrated Streak Camera in standard CMOS technology. , 2010, , .		1
59	A safe, low-cost, and portable instrumentation for bedside time-resolved picosecond near infrared spectroscopy. Proceedings of SPIE, 2009, , .	0.8	3
60	Methods for improvement of spatial light modulator image rendering. Optical Engineering, 2009, 48, 034002.	1.0	2
61	A new high-resolution Time-to-Digital Converter concept based on a 128 stage 0.35 µm CMOS delay generator. , 2009, , .		2
62	Analogue-driven bistable ferroelectric liquid crystals. Analog Integrated Circuits and Signal Processing, 2008, 57, 187-196.	1.4	0
63	Optoelectronic implementation of helical cone-beam computed tomography algorithms. Optical Engineering, 2008, 47, 058201.	1.0	0
64	Performances of a solid streak camera in standard CMOS technology with nanosecond time resolution. Proceedings of SPIE, 2008, , .	0.8	0
65	Optical implementation of the filtered backprojection algorithm. Optical Engineering, 2007, 46, 108202.	1.0	1
66	Compatibility of temporal multiplexed spatial light modulator with optical image processing. Optics Communications, 2007, 275, 27-37.	2.1	2
67	A New Spatiotemporal CMOS Imager With Analog Accumulation Capability for Nanosecond Low-Power Pulse Detections. IEEE Sensors Journal, 2006, 6, 1200-1208.	4.7	11
68	FLC-SLM dynamic improvement with temporal multiplexing: application to optical image processing. , 2006, 6183, 390.		0
69	VHDL-AMS models of FLC for spatial light modulator virtual prototyping. , 2006, 6183, 400.		0
70	Capabilities of a new spatiotemporal CMOS imager for nanosecond low power pulse detection. , 2006, 6187, 472.		0
71	Modular streak camera concept with independent design of electro-optical configuration and electronics. , 2005, , .		2
72	Real-time measurement of microscopic surface shape using high-speed cameras with continuously scanning interference microscopy. , 2004, 5458, 101.		2

#	Article	IF	CITATIONS
73	A low-cost high-repetition-rate picosecond laser diode pulse generator. , 2004, , .		31
74	A fast CMOS array imager for nanosecond light pulse detection in accumulation mode. , 2004, , .		1
75	A fast high-resolution CMOS imager for nanosecond light pulse detections. , 2004, 5451, 434.		3
76	Image processing provides low-frequency jitter correction for synchroscan streak camera temporal resolution enhancement. , 2004, 5457, 245.		5
77	Streak camera: a multidetector for diffuse optical tomography. Applied Optics, 2003, 42, 3313.	2.1	19
78	Very high long-term stability synchroscan streak camera. Review of Scientific Instruments, 2003, 74, 2646-2653.	1.3	24
79	Synchroscan streak camera temporal resolution improvement by phase-locked loop technique. , 2003, 4948, 324.		0
80	Comparison of two time-resolved detectors for diffuse optical tomography: photomultiplier tubetime-correlated single photon counting and multichannel streak camera. , 2003, , .		6
81	<title>Model of an instrumented optoelectronic transmission system in HDL-A and VHDL-AMS</title> . , 1999, , .		3
82	A spatiotemporal CMOS imager for nanosecond low power pulse detections. , 0, , .		1
83	Ultrafast Imaging in Standard (Bi)CMOS Technology. , 0, , .		3
84	Parallelized Integrated Time-Correlated Photon Counting System for High Photon Counting Rate Applications. , 0, , .		3