Chyuan-Sheng Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5419576/publications.pdf

Version: 2024-02-01

430874 454955 31 1,808 18 30 citations g-index h-index papers 32 32 32 3620 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	CRISPR genome surgery in a novel humanized model for autosomal dominant retinitis pigmentosa. Molecular Therapy, 2022, 30, 1407-1420.	8.2	16
2	Abolishing the prelamin A ZMPSTE24 cleavage site leads to progeroid phenotypes with near-normal longevity in mice. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	8
3	Long-term vitamin A supplementation in a preclinical mouse model for <i>RhoD190N </i> -associated retinitis pigmentosa. Human Molecular Genetics, 2022, 31, 2438-2451.	2.9	5
4	Snapshots of nascent RNA reveal cell- and stimulus-specific responses to acute kidney injury. JCI Insight, 2022, 7, .	5.0	3
5	Release of stem cells from quiescence reveals gliogenic domains in the adult mouse brain. Science, 2021, 372, 1205-1209.	12.6	44
6	Mouse Models of Achromatopsia in Addressing Temporal "Point of No Return―in Gene-Therapy. International Journal of Molecular Sciences, 2021, 22, 8069.	4.1	2
7	Pparg signaling controls bladder cancer subtype and immune exclusion. Nature Communications, 2021, 12, 6160.	12.8	28
8	GEM-IL: A highly responsive fluorescent lactate indicator. Cell Reports Methods, 2021, 1, 100092.	2.9	17
9	Photoactivatable Cre recombinase 3.0 for in vivo mouse applications. Nature Communications, 2020, 11, 2141.	12.8	36
10	Generation of functional lungs via conditional blastocyst complementation using pluripotent stem cells. Nature Medicine, 2019, 25, 1691-1698.	30.7	69
11	Parenchymal and stromal tissue regeneration of tooth organ by pivotal signals reinstated in decellularized matrix. Nature Materials, 2019, 18, 627-637.	27. 5	53
12	Mechanisms of neurodegeneration in a preclinical autosomal dominant retinitis pigmentosa knock-in model with a RhoD190N mutation. Cellular and Molecular Life Sciences, 2019, 76, 3657-3665.	5.4	7
13	CRISPR Repair Reveals Causative Mutation in a Preclinical Model of Retinitis Pigmentosa: A Brief Methodology. Methods in Molecular Biology, 2018, 1715, 191-205.	0.9	4
14	The BRCT Domains of the BRCA1 and BARD1 Tumor Suppressors Differentially Regulate Homology-Directed Repair and Stalled Fork Protection. Molecular Cell, 2018, 72, 127-139.e8.	9.7	58
15	Genetic Rescue Reverses Microglial Activation in Preclinical Models of Retinitis Pigmentosa. Molecular Therapy, 2018, 26, 1953-1964.	8.2	16
16	Clustered Regularly Interspaced Short Palindromic Repeats-Based Genome Surgery for the Treatment of Autosomal Dominant Retinitis Pigmentosa. Ophthalmology, 2018, 125, 1421-1430.	5.2	100
17	A Practical Approach to Retinal Dystrophies. Advances in Experimental Medicine and Biology, 2018, 1085, 245-259.	1.6	6
18	Genetic rescue models refute nonautonomous rod cell death in retinitis pigmentosa. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5259-5264.	7.1	26

#	Article	IF	Citations
19	An essential role of intestinal cell kinase in lung development is linked to the perinatal lethality of human <scp>ECO</scp> syndrome. FEBS Letters, 2017, 591, 1247-1257.	2.8	18
20	Nerve Growth Factor Promotes Gastric Tumorigenesis through Aberrant Cholinergic Signaling. Cancer Cell, 2017, 31, 21-34.	16.8	332
21	PDGFRÎ ² -P2A-CreERT2 mice: a genetic tool to target pericytes in angiogenesis. Angiogenesis, 2017, 20, 655-662.	7.2	56
22	Bone Marrow Myeloid Cells Regulate Myeloid-Biased Hematopoietic Stem Cells via a Histamine-Dependent Feedback Loop. Cell Stem Cell, 2017, 21, 747-760.e7.	11.1	68
23	Transcription factor TFCP2L1 patterns cells in the mouse kidney collecting ducts. ELife, 2017, 6, .	6.0	58
24	CRISPR Repair Reveals Causative Mutation in a Preclinical Model of Retinitis Pigmentosa. Molecular Therapy, 2016, 24, 1388-1394.	8.2	93
25	MerTK cleavage limits proresolving mediator biosynthesis and exacerbates tissue inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6526-6531.	7.1	167
26	A critical role for the protein kinase PKK in the maintenance of recirculating mature B cells and the development of B1 cells. Immunology Letters, 2016, 172, 67-78.	2.5	4
27	Effects on Murine Behavior and Lifespan of Selectively Decreasing Expression of Mutant Huntingtin Allele by Supt4h Knockdown. PLoS Genetics, 2015, 11, e1005043.	3.5	50
28	Genetic Pharmacotherapy as an Early CNS Drug Development Strategy: Testing Glutaminase Inhibition for Schizophrenia Treatment in Adult Mice. Frontiers in Systems Neuroscience, 2015, 9, 165.	2.5	23
29	High-Mobility Group Box 1 Is Dispensable for Autophagy, Mitochondrial Quality Control, and Organ Function InÁVivo. Cell Metabolism, 2014, 19, 539-547.	16.2	82
30	The Ngal reporter mouse detects the response of the kidney to injury in real time. Nature Medicine, 2011, 17, 216-222.	30.7	359
31	Transplantation of Reprogrammed Embryonic Stem Cells Improves Visual Function in a Mouse Model for Retinitis Pigmentosa. Annals of Neurosciences, 2010, 17, 185-6.	1.7	0