Punamshree Das

List of Publications by Citations

Source: https://exaly.com/author-pdf/5419284/punamshree-das-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

120 papers 4,510 citations

36 h-index

63 g-index

129 ext. papers

5,337 ext. citations

avg, IF

6.13 L-index

#	Paper	IF	Citations
120	Synthesis of silver nanoparticles in an aqueous suspension of graphene oxide sheets and its antimicrobial activity. <i>Colloids and Surfaces B: Biointerfaces</i> , 2011 , 83, 16-22	6	354
119	Removal of a Cationic Dye from Aqueous Solution Using Graphene Oxide Nanosheets: Investigation of Adsorption Parameters. <i>Journal of Chemical & Engineering Data</i> , 2013 , 58, 151-158	2.8	225
118	Cu-Ag bimetallic nanoparticles on reduced graphene oxide nanosheets as peroxidase mimic for glucose and ascorbic acid detection. <i>Sensors and Actuators B: Chemical</i> , 2017 , 238, 842-851	8.5	192
117	Reduction and functionalization of graphene oxide sheets using biomimetic dopamine derivatives in one step. <i>ACS Applied Materials & amp; Interfaces</i> , 2012 , 4, 1016-20	9.5	167
116	Kinetics and Adsorption Behavior of the Methyl Blue at the Graphene Oxide/Reduced Graphene Oxide Nanosheet Water Interface: A Comparative Study. <i>Journal of Chemical & Data</i> , 2013 , 58, 3477-3488	2.8	139
115	Ammonia-modified graphene sheets decorated with magnetic FeO nanoparticles for the photocatalytic and photo-Fenton degradation of phenolic compounds under sunlight irradiation. <i>Journal of Hazardous Materials</i> , 2017 , 325, 90-100	12.8	135
114	In situ biosynthesis of Ag, Au and bimetallic nanoparticles using Piper pedicellatum C.DC: green chemistry approach. <i>Colloids and Surfaces B: Biointerfaces</i> , 2013 , 102, 627-34	6	125
113	Reduced graphene oxide nanosheets decorated with Au, Pd and AuPd bimetallic nanoparticles as highly efficient catalysts for electrochemical hydrogen generation. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 20254-20266	13	121
112	The synthesis of citrate-modified silver nanoparticles in an aqueous suspension of graphene oxide nanosheets and their antibacterial activity. <i>Colloids and Surfaces B: Biointerfaces</i> , 2013 , 105, 128-36	6	117
111	Magnetically recoverable FeO/graphene nanocomposite towards efficient removal of triazine pesticides from aqueous solution: Investigation of the adsorption phenomenon and specific ion effect. <i>Chemosphere</i> , 2017 , 168, 1058-1067	8.4	108
110	Pt-Decorated Boron Nitride Nanosheets as Artificial Nanozyme for Detection of Dopamine. <i>ACS Applied Materials & Detection of Dopamine ACS Detection Det</i>	9.5	98
109	Reduced graphene oxide nanosheets decorated with Au-Pd bimetallic alloy nanoparticles towards efficient photocatalytic degradation of phenolic compounds in water. <i>Nanoscale</i> , 2016 , 8, 8276-87	7.7	91
108	Removal of methyl green dye molecule from aqueous system using reduced graphene oxide as an efficient adsorbent: Kinetics, isotherm and thermodynamic parameters. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2014 , 457, 125-133	5.1	88
107	Graphene-polyaniline nanocomposite based biosensor for detection of antimalarial drug artesunate in pharmaceutical formulation and biological fluids. <i>Talanta</i> , 2013 , 111, 47-53	6.2	85
106	Sunlight assisted degradation of dye molecules and reduction of toxic Cr(VI) in aqueous medium using magnetically recoverable Fe3O4/reduced graphene oxide nanocomposite. <i>RSC Advances</i> , 2016 , 6, 11049-11063	3.7	84
105	Reduction of aromatic nitro compounds catalyzed by biogenic CuO nanoparticles. <i>RSC Advances</i> , 2014 , 4, 53229-53236	3.7	74
104	One-pot synthesis of gold nanoparticle/molybdenum cluster/graphene oxide nanocomposite and its photocatalytic activity. <i>Applied Catalysis B: Environmental</i> , 2013 , 130-131, 270-276	21.8	69

103	The antimicrobial effect of silicon nanowires decorated with silver and copper nanoparticles. <i>Nanotechnology</i> , 2013 , 24, 495101	3.4	69
102	Dual responsive magnetic FeO-TiO/graphene nanocomposite as an artificial nanozyme for the colorimetric detection and photodegradation of pesticide in an aqueous medium. <i>Journal of Hazardous Materials</i> , 2020 , 385, 121516	12.8	69
101	Silicon nanowire arrays-induced graphene oxide reduction under UV irradiation. <i>Nanoscale</i> , 2011 , 3, 46	627 .9	65
100	Solvothermal synthesis of CoS/reduced porous graphene oxide nanocomposite for selective colorimetric detection of Hg(II) ion in aqueous medium. <i>Sensors and Actuators B: Chemical</i> , 2017 , 244, 684-692	8.5	62
99	Ion specificity of the zeta potential of alpha-alumina, and of the adsorption of p-hydroxybenzoate at the alpha-alumina-water interface. <i>Journal of Colloid and Interface Science</i> , 2010 , 344, 482-91	9.3	62
98	Biocompatible bimetallic Au-Ni doped graphitic carbon nitride sheets: A novel peroxidase-mimicking artificial enzyme for rapid and highly sensitive colorimetric detection of glucose. <i>Sensors and Actuators B: Chemical</i> , 2019 , 285, 277-290	8.5	61
97	Ag and Au nanoparticles/reduced graphene oxide composite materials: Synthesis and application in diagnostics and therapeutics. <i>Advances in Colloid and Interface Science</i> , 2019 , 271, 101991	14.3	57
96	Preparation of graphene/tetrathiafulvalene nanocomposite switchable surfaces. <i>Chemical Communications</i> , 2012 , 48, 1221-3	5.8	56
95	Short- and Long-Range Sensing on Gold Nanostructures, Deposited on Glass, Coated with Silicon Oxide Films of Different Thicknesses. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 8239-8243	3.8	51
94	Facile synthesis and characterization of Fe3O4 nanopowder and Fe3O4/reduced graphene oxide nanocomposite for methyl blue adsorption: A comparative study. <i>Journal of Environmental Chemical Engineering</i> , 2015 , 3, 1974-1985	6.8	50
93	Magnetic FeO@VO/rGO nanocomposite as a recyclable photocatalyst for dye molecules degradation under direct sunlight irradiation. <i>Chemosphere</i> , 2018 , 191, 503-513	8.4	50
92	Synthesis, characterization and catalytic application of Au NPs-reduced graphene oxide composites material: an eco-friendly approach. <i>Catalysis Communications</i> , 2013 , 40, 139-144	3.2	50
91	Propensity of Formate, Acetate, Benzoate, and Phenolate for the Aqueous Solution/Vapor Interface: Surface Tension Measurements and Molecular Dynamics Simulations. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 8242-8247	3.8	48
90	Microwave assisted synthesis of CuS-reduced graphene oxide nanocomposite with efficient photocatalytic activity towards azo dye degradation. <i>Journal of Environmental Chemical Engineering</i> , 2016 , 4, 4600-4611	6.8	42
89	Nickel nanoparticles supported on reduced graphene oxide sheets: a phosphine free, magnetically recoverable and cost effective catalyst for Sonogashira cross-coupling reactions. <i>RSC Advances</i> , 2015 , 5, 103105-103115	3.7	41
88	Clicking ferrocene groups to boron-doped diamond electrodes. Chemical Communications, 2009, 2753-	5 5.8	40
87	Effect of surface roughness and chemical composition on the wetting properties of silicon-based substrates. <i>Comptes Rendus Chimie</i> , 2013 , 16, 65-72	2.7	39
86	A facile preparation of CuS-BSA nanocomposite as enzyme mimics: Application for selective and sensitive sensing of Cr(VI) ions. <i>Sensors and Actuators B: Chemical</i> , 2019 , 294, 253-262	8.5	38

85	Hydrothermal assisted decoration of NiS and CoS nanoparticles on the reduced graphene oxide nanosheets for sunlight driven photocatalytic degradation of azo dye: Effect of background electrolyte and surface charge. <i>Journal of Colloid and Interface Science</i> , 2018 , 516, 342-354	9.3	37
84	Bio-derived ZnO nanoflower: a highly efficient catalyst for the synthesis of chalcone derivatives. <i>RSC Advances</i> , 2015 , 5, 8604-8608	3.7	36
83	CuS Decorated Functionalized Reduced Graphene Oxide: A Dual Responsive Nanozyme for Selective Detection and Photoreduction of Cr(VI) in an Aqueous Medium. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 16131-16143	8.3	35
82	Specific ion effect on the surface properties of Ag/reduced graphene oxide nanocomposite and its influence on photocatalytic efficiency towards azo dye degradation. <i>Applied Surface Science</i> , 2017 , 423, 752-761	6.7	35
81	Voltammetric detection of L-dopa and carbidopa on graphene modified glassy carbon interfaces. <i>Bioelectrochemistry</i> , 2013 , 93, 15-22	5.6	34
80	Green synthesis of stable Cu(0) nanoparticles onto reduced graphene oxide nanosheets: a reusable catalyst for the synthesis of symmetrical biaryls from arylboronic acids under base-free conditions. <i>Catalysis Science and Technology</i> , 2015 , 5, 1251-1260	5.5	33
79	Bimetallic Au-Pd nanoparticles on 2D supported graphitic carbon nitride and reduced graphene oxide sheets: A comparative photocatalytic degradation study of organic pollutants in water. <i>Chemosphere</i> , 2018 , 197, 817-829	8.4	33
78	A green approach for the decoration of Pd nanoparticles on graphene nanosheets: An in situ process for the reduction of CL double bonds and a reusable catalyst for the Suzuki cross-coupling reaction. <i>New Journal of Chemistry</i> , 2015 , 39, 6631-6641	3.6	32
77	High efficiency electron field emission from protruded graphene oxide nanosheets supported on sharp silicon nanowires. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 5040	7.1	32
76	AuNi alloy nanoparticles supported on reduced graphene oxide as highly efficient electrocatalysts for hydrogen evolution and oxygen reduction reactions. <i>International Journal of Hydrogen Energy</i> , 2018 , 43, 1424-1438	6.7	32
75	Cationic and anionic dye removal from aqueous solution using montmorillonite clay: evaluation of adsorption parameters and mechanism. <i>Desalination and Water Treatment</i> , 2016 , 57, 8372-8388		31
74	Bio-derived CuO nanoparticles for the photocatalytic treatment of dyes. <i>Materials Letters</i> , 2014 , 123, 202-205	3.3	31
73	Effect of Substrates on Catalytic Activity of Biogenic Palladium Nanoparticles in C-C Cross-Coupling Reactions. <i>ACS Omega</i> , 2019 , 4, 3329-3340	3.9	30
72	TiO2 E e2O3 nanocomposite heterojunction for superior charge separation and the photocatalytic inactivation of pathogenic bacteria in water under direct sunlight irradiation. <i>Journal of Environmental Chemical Engineering</i> , 2018 , 6, 134-145	6.8	30
71	Experimental and Molecular Dynamics Simulation Study of Specific Ion Effect on the Graphene Oxide Surface and Investigation of the Influence on Reactive Extraction of Model Dye Molecule at Water Drganic Interface. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 14088-14100	3.8	29
70	Colorimetric determination of glucose in solution and via the use of a paper strip by exploiting the peroxidase and oxidase mimicking activity of bimetallic Cu-Pd nanoparticles deposited on reduced graphene oxide, graphitic carbon nitride, or MoS nanosheets. <i>Mikrochimica Acta</i> , 2018 , 186, 13	5.8	29
69	Photocatalytic activity of Ag nanoparticles synthesized by using Piper pedicellatum C.DC fruits. <i>Materials Letters</i> , 2013 , 102-103, 1-4	3.3	28
68	Biogenic synthesis of Fe 2 O 3 @SiO 2 nanoparticles for ipso -hydroxylation of boronic acid in water. <i>Tetrahedron Letters</i> , 2017 , 58, 4255-4259	2	27

(2017-2008)

67	Propensities of oxalic, citric, succinic, and maleic acids for the aqueous solution/vapour interface: Surface tension measurements and molecular dynamics simulations. <i>Chemical Physics Letters</i> , 2008 , 462, 217-221	2.5	27	
66	Kinetics and adsorption behaviour of benzoate and phthalate at the 🗟 lumina Water interface: Influence of functionality. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2005 , 264, 90-100	5.1	27	
65	Biosynthesis of gold decorated reduced graphene oxide and its biological activities. <i>Materials Letters</i> , 2016 , 178, 239-242	3.3	27	
64	Ilicking Thiophene on Diamond Interfaces. Preparation of a Conducting Polythiophene/Diamond Hybrid Material. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 17082-17086	3.8	26	
63	Formation of onion-like fullerene and chemically converted graphene-like nanosheets from low-quality coals: application in photocatalytic degradation of 2-nitrophenol. <i>RSC Advances</i> , 2016 , 6, 357	1 3 7-35	1 31 0	
62	Reduced graphene oxide nanosheets decorated with AuPd bimetallic nanoparticles: a multifunctional material for photothermal therapy of cancer cells. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 8366-8374	7-3	22	
61	Magnetic nanoparticles towards efficient adsorption of gram positive and gram negative bacteria: An investigation of adsorption parameters and interaction mechanism. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2017 , 516, 161-170	5.1	21	
60	Inhibiting protein biofouling using graphene oxide in droplet-based microfluidic microsystems. <i>Lab on A Chip</i> , 2012 , 12, 1601-4	7.2	21	
59	Metal free MoS2 2D sheets as a peroxidase enzyme and visible-light-induced photocatalyst towards detection and reduction of Cr(VI) ions. <i>New Journal of Chemistry</i> , 2018 , 42, 16919-16929	3.6	21	
58	Aluminum Titania Nanoparticle Composites as Nonprecious Catalysts for Efficient Electrochemical Generation of H2. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 23655-67	9.5	20	
57	The influence of functionality on the adsorption of p-hydroxy benzoate and phthalate at the hematite-electrolyte interface. <i>Journal of Colloid and Interface Science</i> , 2007 , 306, 205-15	9.3	20	
56	Peroxidase Mimic Activity of AuAg/l-Cys-rGO Nanozyme toward Detection of Cr(VI) Ion in Water: Role of 3,3?,5,5?-Tetramethylbenzidine Adsorption. <i>Journal of Chemical & Data</i> , 2019, 64, 4977-4990	2.8	19	
55	Dual responsive magnetic Au@Ni nanostructures loaded reduced graphene oxide sheets for colorimetric detection and photocatalytic degradation of toxic phenolic compounds. <i>Journal of Hazardous Materials</i> , 2019 , 368, 365-377	12.8	19	
54	Cu(0) nanoparticle-decorated functionalized reduced graphene oxide sheets as artificial peroxidase enzymes: application for colorimetric detection of Cr(VI) ions. <i>New Journal of Chemistry</i> , 2019 , 43, 1404-	· 1 414	18	
53	Kinetics and adsorption of benzoate and salicylate at the natural hematite water interface. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2005 , 254, 49-55	5.1	18	
52	Superbending (0-180°) and High-Voltage Operating Metal-Oxide-Based Flexible Supercapacitor. <i>ACS Applied Materials & Discrete Supercapacitor</i> 11, 37665-37674	9.5	17	
51	Adsorption of 17\(\text{\text{\text{\text{E}}}}\)thynyl estradiol and \(\text{\text{\text{\text{\text{E}}}}\)tradiol on graphene oxide surface: An experimental and computational study. \(\text{Journal of Molecular Liquids, \text{2018}}\), 269, 160-168	6	17	
50	Magnetically recoverable graphene-based nanocomposite material as an efficient catalyst for the synthesis of propargylamines via A3 coupling reaction. <i>New Journal of Chemistry.</i> 2017 , 41, 12756-12766	53.6	17	

49	Bio-derived CuO nanocatalyst for oxidation of aldehyde: a greener approach. <i>RSC Advances</i> , 2014 , 4, 20636-20640	3.7	16
48	Reduced Graphene Oxide Nanosheets Decorated with Au Nanoparticles as an Effective Bactericide: Investigation of Biocompatibility and Leakage of Sugars and Proteins. <i>ChemPlusChem</i> , 2014 , 79, n/a-n/a	2.8	16
47	Polydopamine functionalized graphene sheets decorated with magnetic metal oxide nanoparticles as efficient nanozyme for the detection and degradation of harmful triazine pesticides. <i>Chemosphere</i> , 2021 , 268, 129328	8.4	16
46	Enhanced hydrogen evolution reaction on highly stable titania-supported PdO and Eu2O3 nanocomposites in a strong alkaline solution. <i>International Journal of Energy Research</i> , 2019 , 43, 5367-5	3 8 5	15
45	Green synthesis of Au-Ag-In-rGO nanocomposites and its Eglucosidase inhibition and cytotoxicity effects. <i>Materials Letters</i> , 2018 , 211, 48-50	3.3	15
44	Influence of anions on the adsorption kinetics of salicylate onto alpha-alumina in aqueous medium. <i>Journal of Colloid and Interface Science</i> , 2007 , 316, 260-7	9.3	14
43	Biosynthesis of Fe2O3@SiO2 nanoparticles and its photocatalytic activity. <i>Materials Letters</i> , 2016 , 164, 480-483	3.3	13
42	Development of novel efficient 2D nanocomposite catalyst towards the three-component coupling reaction for the synthesis of imidazo[1,2- a]pyridines. <i>Applied Catalysis A: General</i> , 2017 , 542, 368-379	5.1	12
41	Computational and experimental assessment of pH and specific ions on the solute solvent interactions of clay-biochar composites towards tetracycline adsorption: Implications on wastewater treatment. <i>Journal of Environmental Management</i> , 2021 , 283, 111989	7.9	12
40	Coral-Shaped Bifunctional NiCo2O4 Nanostructure: A Material for Highly Efficient Electrochemical Charge Storage and Electrocatalytic Oxygen Evolution Reaction. <i>ACS Applied Energy Materials</i> , 2020 , 3, 6793-6804	6.1	10
39	Wet-chemical approach for the halogenation of hydrogenated boron-doped diamond electrodes. <i>Chemical Communications</i> , 2008 , 6294-6	5.8	10
38	Nano Au/Pd-catalysed Bn-waterBynthesis of C3II3? diaryl-oxindole scaffolds via N2-selective dearomatization of indole. <i>Green Chemistry</i> , 2020 , 22, 170-179	10	10
37	Biocompatible functionalized AuPd bimetallic nanoparticles decorated on reduced graphene oxide sheets for photothermal therapy of targeted cancer cells. <i>Journal of Photochemistry and Photobiology B: Biology</i> , 2020 , 212, 112028	6.7	10
36	Facile synthesis of CuS nanoparticles on two-dimensional nanosheets as efficient artificial nanozyme for detection of Ibuprofen in water. <i>Journal of Environmental Chemical Engineering</i> , 2021 , 9, 104635	6.8	10
35	CoS2 Nanoparticles Supported on rGO, g-C3N4, BCN, MoS2, and WS2 Two-Dimensional Nanosheets with Excellent Electrocatalytic Performance for Overall Water Splitting: Electrochemical Studies and DFT Calculations. ACS Applied Energy Materials, 2021, 4, 1269-1285	6.1	10
34	Palladium nanoparticles decorated on reduced graphene oxide: An efficient catalyst for ligand- and copper-free Sonogashira reaction at room temperature. <i>Applied Organometallic Chemistry</i> , 2017 , 31, e3679	3.1	9
33	Phosphine-free Suzuki cross-coupling reaction: a mild and selective method for the carbonBarbon bond formation in aqueous tea extract. <i>Tetrahedron Letters</i> , 2014 , 55, 5539-5543	2	9
32	Effect of CTAB in biosynthesis of Au-nanoparticles using Gymnocladus assamicus and its biological evaluation. <i>Materials Letters</i> , 2013 , 113, 103-106	3.3	9

31	Graphene oxide nanosheets at the water-organic solvent interface: utilization in one-pot adsorption and reactive extraction of dye molecules. <i>ChemPhysChem</i> , 2014 , 15, 4019-25	3.2	9	
30	Pd Nanoparticles-Loaded Honeycomb-Structured Bio-nanocellulose as a Heterogeneous Catalyst for Heteroaryl Cross-Coupling Reaction. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 954-966	8.3	9	
29	Sustainable Redox Chemistry Route to Multifaceted Fe-Pd Heteronanostructure: Delving into the Synergistic Influence in Catalysis. <i>ChemistrySelect</i> , 2017 , 2, 4577-4585	1.8	8	
28	Direct CH bond activation: palladium-on-carbon as a reusable heterogeneous catalyst for C-2 arylation of indoles with arylboronic acids. <i>New Journal of Chemistry</i> , 2020 , 44, 7675-7682	3.6	8	
27	Adhesion of gram-negative bacteria onto Al2O3 nanoparticles: A study of surface behaviour and interaction mechanism. <i>Journal of Environmental Chemical Engineering</i> , 2018 , 6, 3933-3941	6.8	8	
26	CuS nanoparticles decorated MoS2 sheets as an efficient nanozyme for selective detection and photocatalytic degradation of hydroquinone in water. <i>New Journal of Chemistry</i> , 2021 , 45, 8714-8727	3.6	7	
25	CuS and NiS Nanoparticle-Decorated Porous-Reduced Graphene Oxide Sheets as Efficient Peroxidase Nanozymes for Easy Colorimetric Detection of Hg(II) Ions in a Water Medium and Using a Paper Strip. ACS Sustainable Chemistry and Engineering,	8.3	7	
24	Synthesis of Pd-rGO Nanocomposite for the Evaluation of In Vitro Anticancer and Antidiabetic Activities. <i>ChemistrySelect</i> , 2019 , 4, 1244-1250	1.8	5	
23	Magnetic mixed metal oxide nanomaterials derived from industrial waste and its photocatalytic applications in environmental remediation. <i>Journal of Environmental Chemical Engineering</i> , 2020 , 8, 1042	2 <mark>6.8</mark>	5	
22	CuCo-Layered Double Hydroxide Nanosheet-Based Polyhedrons for Flexible Supercapacitor Cells. <i>ACS Applied Nano Materials</i> , 2021 , 4, 5250-5262	5.6	5	
21	Magnetic Metal/Metal Oxide Nanoparticles and Nanocomposite Materials for Water Purification 2019 , 473-503		5	
20	Fluorescent graphitic carbon nitride and graphene oxide quantum dots as efficient nanozymes: Colorimetric detection of fluoride ion in water by graphitic carbon nitride quantum dots. <i>Journal of Environmental Chemical Engineering</i> , 2021 , 9, 104803	6.8	5	
19	Correction: Reduced graphene oxide nanosheets decorated with Au-Pd bimetallic alloy nanoparticles towards efficient photocatalytic degradation of phenolic compounds in water. <i>Nanoscale</i> , 2016 , 8, 19174-19175	7.7	4	
18	Photocatalytic Activity of Au Nanoparticles Synthesized by Piper pedicellatum C. DC Fruits. <i>Nanoscience and Nanotechnology Letters</i> , 2013 , 5, 758-764	0.8	4	
17	A novel method for the rapid sensing of HO using a colorimetric AuNP probe and its DFT study. <i>Analytical Methods</i> , 2021 , 13, 2055-2065	3.2	4	
16	Dual colorimetric sensing of ascorbic acid and thyroxine using Ag-EGCG-CTAB a DFT approach <i>RSC Advances</i> , 2021 , 11, 36698-36706	3.7	3	
15	Highly sensitive and selective colorimetric detection of dual metal ions (Hg and Sn) in water: an eco-friendly approach <i>RSC Advances</i> , 2021 , 11, 14700-14709	3.7	3	
14	CoFeO Hollow Spheres-Decorated Three-Dimensional rGO Sponge for Highly Efficient Electrochemical Charge Storage Devices <i>ACS Omega</i> , 2022 , 7, 11305-11319	3.9	3	

13	Biogenic synthesis of AgAuIh decorated on rGO nanosheet and its antioxidant and biological activities. <i>Materials Research Express</i> , 2017 , 4, 095013	1.7	2
12	Gold nanoparticles deposited on the surface of low-dimensional niobium trisulfide and vanadium tetrasulfide. <i>Materials Today: Proceedings</i> , 2017 , 4, 11411-11417	1.4	2
11	CoFe2O4 Nanoparticle Decorated Hierarchical Biomass Derived Porous Carbon Based Nanocomposites for High-Performance All-Solid-State Flexible Asymmetric Supercapacitor Devices. <i>ACS Applied Electronic Materials</i> ,	4	2
10	All-Solid-State Flexible Symmetric Supercapacitor Based on Morphology Oriented Amorphous Cu toB Alloy Nanosheets for Energy Storage. <i>Batteries and Supercaps</i> ,	5.6	2
9	Cu and CoFe2O4 nanoparticles decorated hierarchical porous carbon: An excellent catalyst for reduction of nitroaromatics and microwave-assisted antibiotic degradation. <i>Applied Catalysis B: Environmental</i> , 2022 , 312, 121407	21.8	1
8	N-doped graphene modulated N-rich carbon nitride realizing a promising all-solid-state flexible supercapacitor. <i>Journal of Energy Storage</i> , 2022 , 52, 104731	7.8	1
7	Fabrication of magnetically separable ruthenium nanoparticles decorated on channelled silica microspheres: Efficient catalysts for chemoselective hydrogenation of nitroarenes. <i>Dalton Transactions</i> , 2021 , 50, 13483-13496	4.3	О
6	Non-Covalent Functionalization of Graphene Oxide-Supported 2-Picolyamine-Based Zinc(II) Complexes as Novel Electrocatalysts for Hydrogen Production. <i>Catalysts</i> , 2022 , 12, 389	4	Ο
5	Highly selective, rapid and simple colorimetric detection of Fe3+in fortified foods by L-Cysteine modified AuNP. <i>Microchemical Journal</i> , 2022 , 107480	4.8	O
4	Cathodic Activation of Titania-Fly Ash Cenospheres for Efficient Electrochemical Hydrogen Production: A Proposed Solution to Treat Fly Ash Waste. <i>Catalysts</i> , 2022 , 12, 466	4	O
3	Gold Nanoparticles©raphene Composites Material: Synthesis, Characterization and Catalytic Application 2015 , 121-141		
2	Metal Oxide-Graphene Nanocomposites. <i>Advances in Chemical and Materials Engineering Book</i> Series, 2014 , 196-225	0.2	
1	Electrocatalytic hydrogen generation using tripod containing pyrazolylborate-based copper(ii), nickel(ii), and iron(iii) complexes loaded on a glassy carbon electrode RSC Advances, 2022, 12, 8030-80	04 2 ·7	