Edésia Martins Barros de Sousa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5419100/publications.pdf

Version: 2024-02-01

34 papers

894 citations

471509 17 h-index 30 g-index

34 all docs

34 docs citations

34 times ranked 1563 citing authors

#	Article	IF	Citations
1	Influence of mesoporous structure type on the controlled delivery of drugs: release of ibuprofen from MCM-48, SBA-15 and functionalized SBA-15. Journal of Sol-Gel Science and Technology, 2009, 50, 421-429.	2.4	136
2	Multifunctional mesoporous silica nanoparticles for cancer-targeted, controlled drug delivery and imaging. Microporous and Mesoporous Materials, 2017, 242, 271-283.	4.4	80
3	Mesoporous silica materials functionalized with folic acid: preparation, characterization and release profile study with methotrexate. Journal of Sol-Gel Science and Technology, 2016, 77, 186-204.	2.4	55
4	Magnetic solid-phase extraction based on mesoporous silica-coated magnetic nanoparticles for analysis of oral antidiabetic drugs in human plasma. Materials Science and Engineering C, 2014, 40, 275-280.	7.3	54
5	Folate-grafted boron nitride nanotubes: Possible exploitation in cancer therapy. International Journal of Pharmaceutics, 2015, 481, 56-63.	5.2	48
6	Synthesis and characterization of mesoporous silica/poly(N-isopropylacrylamide) functional hybrid useful for drug delivery. Journal of Materials Science, 2010, 45, 1478-1486.	3.7	46
7	Mesoporous silica-magnetite nanocomposite: facile synthesis route for application in hyperthermia. Journal of Sol-Gel Science and Technology, 2010, 53, 418-427.	2.4	43
8	Synthesis, characterization, and biodistribution studies of 99m Tc-labeled SBA-16 mesoporous silica nanoparticles. Materials Science and Engineering C, 2015, 56, 181-188.	7.3	43
9	Chitosan grafted into mesoporous silica nanoparticles as benznidazol carrier for Chagas diseases treatment. Microporous and Mesoporous Materials, 2018, 272, 265-275.	4.4	40
10	Boron nitride nanotubes coated with organic hydrophilic agents: Stability and cytocompatibility studies. Materials Science and Engineering C, 2013, 33, 4616-4623.	7.3	38
11	An Assessment of the Potential Use of BNNTs for Boron Neutron Capture Therapy. Nanomaterials, 2017, 7, 82.	4.1	37
12	Attaching folic acid on hydroxyapatite nanorod surfaces: an investigation of the HA–FA interaction. RSC Advances, 2016, 6, 76390-76400.	3.6	28
13	An in situ synthesis of mesoporous SBA-16/hydroxyapatite for ciprofloxacin release: in vitro stability and cytocompatibility studies. Journal of Materials Science: Materials in Medicine, 2014, 25, 2527-2540.	3.6	24
14	Biodegradable Polymers Grafted onto Multifunctional Mesoporous Silica Nanoparticles for Gene Delivery. ChemEngineering, 2018, 2, 24.	2.4	23
15	Protection of normal cells from irradiation bystander effects by silica-flufenamic acid nanoparticles. Journal of Materials Science: Materials in Medicine, 2018, 29, 130.	3.6	22
16	Boron nitride nanotubes radiolabeled with 153Sm and 159Gd: Potential application in nanomedicine. Applied Radiation and Isotopes, 2020, 157, 109032.	1.5	21
17	Mesoporous silica SBA-16/hydroxyapatite-based composite for ciprofloxacin delivery to bacterial bone infection. Journal of Sol-Gel Science and Technology, 2018, 85, 369-381.	2.4	19
18	Evaluation of the effects of boron nitride nanotubes functionalized with gum arabic on the differentiation of rat mesenchymal stem cells. RSC Advances, 2015, 5, 45431-45438.	3.6	17

#	Article	IF	CITATIONS
19	Hybrid polymeric systems of mesoporous silica/hydroxyapatite nanoparticles applied as antitumor drug delivery platform. International Journal of Applied Ceramic Technology, 2019, 16, 1836-1849.	2.1	16
20	Multifunctional hybrid nanosystems based on mesoporous silica and hydroxyapatite nanoparticles applied as potential nanocarriers for theranostic applications. Journal of Nanoparticle Research, 2020, 22, 1.	1.9	15
21	Functionalized-radiolabeled hydroxyapatite/tenorite nanoparticles as theranostic agents for osteosarcoma. Ceramics International, 2018, 44, 17800-17811.	4.8	14
22	89 Srâ€doped hydroxyapatite nanoparticles as a potential therapeutic agent for bone tumors. International Journal of Applied Ceramic Technology, 2019, 16, 1904-1919.	2.1	11
23	SBA-15/P[(N-ipaam)-co-(MAA)] thermo and pH-sensitive hybrid systems and their methotrexate (MTX) incorporation and release studies. Journal of Drug Delivery Science and Technology, 2019, 52, 895-904.	3.0	10
24	A Dual-Functional [SBA-15/Fe ₃ O ₄ /P(<i>N</i> li>-iPAAm)] Hybrid System as a Potential Nanoplatform for Biomedical Application. Journal of Nanomaterials, 2014, 2014, 1-10.	2.7	9
25	Boron nitride nanotube-CREKA peptide as an effective target system to metastatic breast cancer. Journal of Pharmaceutical Investigation, 2020, 50, 469-480.	5.3	9
26	Osteogenic differentiation of adipose-derived stem cells in mesoporous SBA-16 and SBA-16 hydroxyapatite scaffolds. RSC Advances, 2015, 5, 54551-54562.	3.6	7
27	A new theranostic system for bone disorders: Functionalized folate-MDP hydroxyapatite nanoparticles with radiolabeled copper-64. Materials Chemistry and Physics, 2020, 254, 123265.	4.0	7
28	Surface modification and biological evaluation of kojic acid/silica nanoparticles as platforms for biomedical systems. International Journal of Applied Ceramic Technology, 2020, 17, 380-391.	2.1	6
29	Boron nitride nanotubes decorated with magnetite nanoparticles for application as a multifunctional system in cancer treatment. Nano Structures Nano Objects, 2020, 24, 100616.	3.5	4
30	Synthesis and characterization of gold nanorods coated by mesoporous silica MCM-41 as a platform for bioapplication in photohyperthermia. Nanotechnology, 2021, 32, 505720.	2.6	4
31	Response of Fibroblasts MRC-5 to Flufenamic Acid-Grafted MCM-41 Nanoparticles. Bioengineering, 2018, 5, 4.	3.5	3
32	Microwave radiation-assisted covalent functionalization of boron nitride nanotubes and their grafting with cationic thermo and pH-sensitive hydrogel. Applied Nanoscience (Switzerland), 2021, 11, 505-520.	3.1	3
33	A Brief Review on Hydroxyapatite Nanoparticles Interactions with Biological Constituents. Journal of Biomaterials and Nanobiotechnology, 2022, 13, 24-44.	0.5	2
34	Nanoparticles for Anticancer Therapy. Materials Horizons, 2021, , 283-311.	0.6	O