Hung-Ju Yen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5418872/publications.pdf

Version: 2024-02-01

82	4,131 citations	39	63
papers		h-index	g-index
87	87	87	3657 citing authors
all docs	docs citations	times ranked	

#	Article	IF	Citations
1	Solution-processable triarylamine-based electroactive high performance polymers for anodically electrochromic applications. Polymer Chemistry, 2012, 3, 255-264.	3.9	216
2	Flexible Multiâ€Colored Electrochromic and Volatile Polymer Memory Devices Derived from Starburst Triarylamineâ€Based Electroactive Polyimide. Advanced Functional Materials, 2013, 23, 5307-5316.	14.9	183
3	Strategic Structural Design of a Gel Polymer Electrolyte toward a High Efficiency Lithium-Ion Battery. ACS Applied Energy Materials, 2019, 2, 3937-3971.	5.1	151
4	Recent advances in triphenylamine-based electrochromic derivatives and polymers. Polymer Chemistry, 2018, 9, 3001-3018.	3.9	147
5	Novel Starburst Triarylamine-Containing Electroactive Aramids with Highly Stable Electrochromism in Near-Infrared and Visible Light Regions. Chemistry of Materials, 2011, 23, 1874-1882.	6.7	134
6	High Contrast Ratio and Rapid Switching Electrochromic Polymeric Films Based on 4-(Dimethylamino)triphenylamine-Functionalized Aromatic Polyamides. Macromolecules, 2008, 41, 2800-2808.	4.8	129
7	Solution-Processable Novel Near-Infrared Electrochromic Aromatic Polyamides Based on Electroactive Tetraphenyl- <i>p</i> -Phenylenediamine Moieties. Chemistry of Materials, 2009, 21, 4062-4070.	6.7	120
8	Design and preparation of triphenylamine-based polymeric materials towards emergent optoelectronic applications. Progress in Polymer Science, 2019, 89, 250-287.	24.7	116
9	Highly transparent polyimide hybrids for optoelectronic applications. Reactive and Functional Polymers, 2016, 108, 2-30.	4.1	114
10	Highly flexible and optical transparent 6F-PI/TiO ₂ optical hybrid films with tunable refractive index and excellent thermal stability. Journal of Materials Chemistry, 2010, 20, 531-536.	6.7	92
11	A new pH sensitive fluorescent and white light emissive material through controlled intermolecular charge transfer. Chemical Science, 2015, 6, 789-797.	7.4	89
12	Novel organosoluble aromatic polyimides bearing pendant methoxyâ€substituted triphenylamine moieties: Synthesis, electrochromic, and gas separation properties. Journal of Polymer Science Part A, 2008, 46, 7937-7949.	2.3	86
13	Resistive switching non-volatile and volatile memory behavior of aromatic polyimides with various electron-withdrawing moieties. Journal of Materials Chemistry, 2012, 22, 14085.	6.7	86
14	Novel blue and red electrochromic poly(azomethine ether)s based on electroactive triphenylamine moieties. Organic Electronics, 2010, 11, 299-310.	2.6	77
15	Various Digital Memory Behaviors of Functional Aromatic Polyimides Based on Electron Donor and Acceptor Substituted Triphenylamines. Macromolecules, 2012, 45, 3749-3758.	4.8	73
16	Flexible electrofluorochromic devices with the highest contrast ratio based on aggregation-enhanced emission (AEE)-active cyanotriphenylamine-based polymers. Chemical Communications, 2013, 49, 9797.	4.1	72
17	Structurally Defined 3D Nanographene Assemblies via Bottomâ€Up Chemical Synthesis for Highly Efficient Lithium Storage. Advanced Materials, 2016, 28, 10250-10256.	21.0	72
18	Solution-processable triarylamine-based high-performance polymers for resistive switching memory devices. Polymer Journal, 2016, 48, 117-138.	2.7	70

#	Article	IF	Citations
19	Novel programmable functional polyimides: preparation, mechanism of CT induced memory, and ambipolar electrochromic behavior. Journal of Materials Chemistry C, 2013, 1, 7623.	5. 5	68
20	Transmissive to black electrochromic aramids with high near-infrared and multicolor electrochromism based on electroactive tetraphenylbenzidine units. Journal of Materials Chemistry, 2011, 21, 6230.	6.7	67
21	A New Class of HighTgand Organosoluble Aromatic Poly(amineâ^'1,3,4-oxadiazole)s Containing Donor and Acceptor Moieties for Blue-Light-Emitting Materials. Macromolecules, 2006, 39, 6036-6045.	4.8	66
22	Substituent Effect on Electrochemical and Electrochromic Behaviors of Ambipolar Aromatic Polyimides Based on Aniline Derivatives. Macromolecules, 2011, 44, 9595-9610.	4.8	64
23	Nonvolatile transistor memory devices using high dielectric constant polyimide electrets. Journal of Materials Chemistry C, 2013, 1, 3235.	5.5	64
24	Large Grained Perovskite Solar Cells Derived from Single-Crystal Perovskite Powders with Enhanced Ambient Stability. ACS Applied Materials & Samp; Interfaces, 2016, 8, 14513-14520.	8.0	64
25	Novel high-efficiency PL polyimide nanofiber containing aggregation-induced emission (AIE)-active cyanotriphenylamine luminogen. Chemical Communications, 2013, 49, 630-632.	4.1	62
26	Enhanced near-infrared electrochromism in triphenylamine-based aramids bearing phenothiazine redox centers. Journal of Materials Chemistry, 2010, 20, 9886.	6.7	61
27	Flexible nanocrystallineâ€titania/polyimide hybrids with high refractive index and excellent thermal dimensional stability. Journal of Polymer Science Part A, 2010, 48, 1433-1440.	2.3	60
28	Novel triphenylamine-containing ambipolar polyimides with pendant anthraquinone moiety for polymeric memory device, electrochromic and gas separation applications. Journal of Materials Chemistry, 2012, 22, 20394.	6.7	60
29	Structural Design of Benzo[1,2- <i>b</i> bbbbli> $\hat{a}\in^2$] dithiophene-Based 2D Conjugated Polymers with Bithienyl and Terthienyl Substituents toward Photovoltaic Applications. Macromolecules, 2014, 47, 1008-1020.	4.8	56
30	Colorless Triphenylamine-Based Aliphatic Thermoset Epoxy for Multicolored and Near-Infrared Electrochromic Applications. ACS Applied Materials & Interfaces, 2014, 6, 3594-3599.	8.0	56
31	Graphene Oxides Used as a New "Dual Role―Binder for Stabilizing Silicon Nanoparticles in Lithium-Ion Battery. ACS Applied Materials & Interfaces, 2018, 10, 15665-15672.	8.0	56
32	Novel highâ€performance polymer memory devices containing (OMe) ₂ tetraphenylâ€ <i>p</i> àêphenylenediamine moieties. Journal of Polymer Science Part A, 2011, 49, 3709-3718.	2.3	52
33	Synthesis and photoluminescent and electrochromic properties of aromatic poly(amine amide)s bearing pendentN-carbazolylphenyl moieties. Journal of Polymer Science Part A, 2006, 44, 4108-4121.	2.3	51
34	Programmable digital nonvolatile memory behaviors of donor–acceptor polyimides bearing triphenylamine derivatives: effects of substituents. Polymer Chemistry, 2012, 3, 1276.	3.9	51
35	Triphenylamineâ€based polyimides with trimethyl substituents for gas separation membrane and electrochromic applications. Journal of Polymer Science Part A, 2011, 49, 3637-3646.	2.3	49
36	Functionalized fullerenes for highly efficient lithium ion storage: Structure-property-performance correlation with energy implications. Nano Energy, 2017, 40, 327-335.	16.0	49

#	Article	IF	Citations
37	Highâ€Efficiency Photoluminescence Wholly Aromatic Triarylamineâ€based Polyimide Nanofiber with Aggregationâ€Induced Emission Enhancement. Advanced Optical Materials, 2013, 1, 668-676.	7.3	47
38	A novel porphyrin-containing polyimide for memory devices. Polymer Chemistry, 2016, 7, 2780-2784.	3.9	45
39	Novel thermally stable and soluble triarylamine functionalized polyimides for gas separation. Polymer Chemistry, 2014, 5, 4219.	3.9	43
40	A facile approach towards optically isotropic, colorless, and thermoplastic polyimidothioethers with high refractive index. Journal of Materials Chemistry, 2010, 20, 4080.	6.7	37
41	Electrically bistable digital memory behaviors of thin films of polyimides based on conjugated bis(triphenylamine) derivatives. Polymer, 2012, 53, 4135-4144.	3.8	37
42	Flexible, optically transparent, high refractive, and thermally stable polyimide–TiO2 hybrids for anti-reflection coating. RSC Advances, 2013, 3, 17048.	3.6	35
43	Tyrosine-derived stimuli responsive, fluorescent amino acids. Chemical Science, 2015, 6, 1150-1158.	7.4	35
44	Flexible memory devices with tunable electrical bistability via controlled energetics in donor–donor and donor–acceptor conjugated polymers. Journal of Materials Chemistry C, 2014, 2, 4374-4378.	5.5	34
45	Synthesis and properties of wholly aromatic polymers bearing cardo fluorene moieties. Journal of Polymer Science Part A, 2007, 45, 4352-4363.	2.3	33
46	Synthesis and Properties of Noncoplanar Rigid-rod Aromatic Polyamides Containing Phenyl or Naphthyl Substituents. Journal of Polymer Research, 2007, 14, 147-155.	2.4	33
47	Novel thermally stable triarylamineâ€containing aromatic polyamides bearing anthrylamine chromophores for highly efficient greenâ€lightâ€emitting materials. Journal of Polymer Science Part A, 2008, 46, 7354-7368.	2.3	33
48	Mixedâ€valence class I transition and electrochemistry of bis(triphenylamine)â€based aramids containing isolated etherâ€linkage. Journal of Polymer Science Part A, 2011, 49, 3805-3816.	2.3	32
49	Electrochromism and Nonvolatile Memory Device Derived from Triphenylamine-Based Polyimides with Pendant Viologen Units. Macromolecular Rapid Communications, 2017, 38, 1600715.	3.9	32
50	Development of Conjugated Polymers for Memory Device Applications. Polymers, 2017, 9, 25.	4.5	31
51	Synthesis and photophysical properties of novel organo-soluble polyarylates bearing triphenylamine moieties. Journal of Polymer Research, 2007, 14, 191-199.	2.4	30
52	Poly(amine-amide-imide)s Bearing PendentN-Carbazolylphenyl Moieties: Synthesis and Electrochromic Properties. Macromolecular Chemistry and Physics, 2006, 207, 1589-1598.	2.2	29
53	Synthesis and photoluminescence properties of novel polyarylates bearing pendent naphthylamine chromophores. European Polymer Journal, 2008, 44, 2608-2618.	5.4	29
54	Synthesis and characterization of electroactive hyperbranched aromatic polyamides based on A2B-type triphenylamine moieties. Journal of Materials Chemistry, 2009, 19, 7666.	6.7	29

#	Article	IF	Citations
55	Red, green, and blue electrochromism in ambipolar poly(amine–amide–imide)s based on electroactive tetraphenylâ€ <i>p</i> à€phenylenediamine units. Journal of Polymer Science Part A, 2010, 48, 4747-4757.	2.3	29
56	Preparation and characterization of near-infrared and multi-colored electrochromic aramids based on aniline-derivatives. Organic Electronics, 2012, 13, 840-849.	2.6	27
57	Novel near-infrared and multi-colored electrochromic polybenzoxazines with electroactive triarylamine moieties. Journal of Materials Chemistry C, 2014, 2, 7796.	5.5	27
58	Synthesis and unexpected electrochemical behavior of the triphenylamineâ€based aramids with <i>ortho</i> â€and <i>para</i> â€trimethylâ€protective substituents. Journal of Polymer Science Part A, 2010, 48, 5271-5281.	2.3	26
59	A facile approach to multicolored electrochromic triarylamine-based thermoset epoxy materials with tunable intervalence charge transfer behavior. Chemical Communications, 2013, 49, 9812.	4.1	26
60	Synthesis, photoluminescence, and electrochromic properties of wholly aromatic polyamides bearing naphthylamine chromophores. Journal of Polymer Science Part A, 2006, 44, 6094-6102.	2.3	24
61	Novel triarylamine-based polybenzoxazines with a donor–acceptor system for polymeric memory devices. Chemical Communications, 2014, 50, 13917-13920.	4.1	23
62	Cyanotriphenylamine-based polyimidothioethers as multifunctional materials for ambipolar electrochromic and electrofluorochromic devices, and fluorescent electrospun fibers. Polymer Chemistry, 2018, 9, 1693-1700.	3.9	23
63	High <i>T</i> _g , ambipolar, and nearâ€infrared electrochromic anthraquinoneâ€based aramids with intervalence chargeâ€transfer behavior. Journal of Polymer Science Part A, 2012, 50, 61-69.	2.3	22
64	Side-chain and linkage-mediated effects of anthraquinone moieties on ambipolar poly(triphenylamine)-based volatile polymeric memory devices. Chemical Communications, 2014, 50, 4915.	4.1	20
65	Dicyanotriphenylamine-Based Polyimides as High-Performance Electrodes for Next Generation Organic Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2021, 13, 17467-17477.	8.0	19
66	Novel solution-processable optically isotropic colorless polyimidothioethers–TiO2 hybrids with tunable refractive index. Journal of Materials Chemistry, 2012, 22, 17236.	6.7	18
67	Nearâ€infrared electrochromic poly(aryl ether)s based on isolated electroactive tetraphenylâ€ <i>p</i> â€phenylenediamine moieties. Journal of Polymer Science Part A, 2009, 47, 5378-5385.	2.3	16
68	High performance polymers and their PCBM hybrids for memory device application. Polymer Chemistry, 2015, 6, 7464-7469.	3.9	16
69	Synthesis, photoluminescence, and electrochromism of novel aromatic poly(amineâ€1,3,4â€oxadiazole)s bearing anthrylamine chromophores. Journal of Polymer Science Part A, 2009, 47, 1584-1594.	2.3	15
70	Zinc and linkage effects of novel porphyrin-containing polyimides on resistor memory behaviors. RSC Advances, 2016, 6, 88531-88537.	3.6	15
71	An Efficient and Reversible Battery Anode Electrode Derived from a Lead-Based Metal–Organic Framework. Energy & Fuels, 2021, 35, 9669-9682.	5.1	13
72	The steric effect of \hat{l}_{\pm} - and \hat{l}^2 -substituted anthraquinone units on high performance polymeric memory devices. Polymer Chemistry, 2015, 6, 7758-7763.	3.9	11

#	Article	IF	Citations
73	Novel triarylamine-based aromatic polyamides bearing secondary amines: synthesis and redox potential inversion characteristics induced by pyridines. Journal of Materials Chemistry C, 2016, 4, 10381-10385.	5.5	10
74	Pure carbon-based electrodes for metal-ion batteries. Carbon Trends, 2021, 3, 100035.	3.0	10
75	Synthesis, electrochemistry, STM investigation of oligothiophene self-assemblies with superior structural order and electronic properties. Chemical Physics, 2016, 481, 191-197.	1.9	8
76	Observation of ionic hydrogen bonding between anions and triarylamine-based aromatic polyimides with secondary amine. Electrochimica Acta, 2018, 261, 307-313.	5.2	8
77	Conjugation of Amphiphilic Proteins to Hydrophobic Ligands in Organic Solvent. Bioconjugate Chemistry, 2018, 29, 2654-2664.	3.6	7
78	Dualâ€Ligand Znâ€Based Metal–Organic Framework as Reversible and Stable Anode Material for Next Generation Lithiumâ€lon Batteries. Energy Technology, 2021, 9, 2100212.	3.8	5
79	CHAPTER 4. High Performance Polyimides for Resistive Switching Memory Devices. RSC Polymer Chemistry Series, 2015, , 136-166.	0.2	2
80	(Invited) Inorganic/Organic Hybride Perovskites for Energy-Related Applications. ECS Meeting Abstracts, 2021, MA2021-01, 690-690.	0.0	0
81	Structurally Defined Nanographene Assemblies for Highly Efficient Lithium Storage. ECS Meeting Abstracts, 2016, , .	0.0	0
82	Electrofluorochromism in AIE luminogens. , 2022, , 397-425.		0