
Masahiro Yamada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5418825/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Titanium surface with nanospikes tunes macrophage polarization to produce inhibitory factors for osteoclastogenesis through nanotopographic cues. Acta Biomaterialia, 2022, 137, 316-330.	4.1	22
2	Novel Mesenchymal Stem Cell Spheroids with Enhanced Stem Cell Characteristics and Bone Regeneration Ability. Stem Cells Translational Medicine, 2022, 11, 434-449.	1.6	10
3	Titanium Nanosurface with a Biomimetic Physical Microenvironment to Induce Endogenous Regeneration of the Periodontium. ACS Applied Materials & Interfaces, 2022, 14, 27703-27719.	4.0	5
4	Titania nanospikes activate macrophage phagocytosis by ligand-independent contact stimulation. Scientific Reports, 2022, 12, .	1.6	5
5	Cytoprotective Preconditioning of Osteoblast-Like Cells with N-Acetyl-L-Cysteine for Bone Regeneration in Cell Therapy. International Journal of Molecular Sciences, 2019, 20, 5199.	1.8	14
6	Increased affinity of endothelial cells to NiTi using ultraviolet irradiation: An <i>in vitro</i> study. Journal of Biomedical Materials Research - Part A, 2018, 106, 1034-1038.	2.1	9
7	Current bone substitutes for implant dentistry. Journal of Prosthodontic Research, 2018, 62, 152-161.	1.1	146
8	Preconditioning of bone marrow-derived mesenchymal stem cells with N-acetyl-L-cysteine enhances bone regeneration via reinforced resistance to oxidative stress. Biomaterials, 2018, 185, 25-38.	5.7	61
9	Activation of Osteoblastic Function on Titanium Surface with Titanium-Doped Hydroxyapatite Nanoparticle Coating: An In Vitro Study. International Journal of Oral and Maxillofacial Implants, 2017, 32, 779-791.	0.6	11
10	UV photofunctionalization promotes nano-biomimetic apatite deposition on titanium. International Journal of Nanomedicine, 2016, 11, 223.	3.3	20
11	Novel antioxidant capability of titanium induced by UV light treatment. Biomaterials, 2016, 108, 177-186.	5.7	69
12	A titanium surface with nano-ordered spikes and pores enhances human dermal fibroblastic extracellular matrix production and integration of collagen fibers. Biomedical Materials (Bristol), 2016, 11, 015010.	1.7	18
13	N-acetyl cysteine alleviates inflammatory reaction of oral epithelial cells to poly (methyl) Tj ETQq1 1 0.784314 rg	gBT/Qverl	ock ₉ 10 Tf 50
14	Retrospective clinical outcome of nanopolymorphic crystalline hydroxyapatite-coated and anodic oxidized titanium implants for 10 years. Journal of Prosthodontic Research, 2015, 59, 62-70.	1.1	11
15	Ultraviolet-C irradiation to titanium implants increases peri-implant bone formation without impeding mineralization in a rabbit femur model. Acta Odontologica Scandinavica, 2015, 73, 302-311.	0.9	16
16	Periodontal-like gingival connective tissue attachment on titanium surface with nano-ordered spikes and pores created by alkali-heat treatment. Dental Materials, 2015, 31, e116-e130.	1.6	29
17	Anti-infective control in human bronchiolar epithelial cells by mucin phenotypic changes following uptake of N-acetyl-L-cysteine. Free Radical Research, 2015, 49, 1449-1458.	1.5	3
18	Specific ultraviolet-C irradiation energy for functionalization of titanium surface to increase osteoblastic cellular attachment. Journal of Biomaterials Applications, 2014, 28, 1419-1429.	1.2	11

MASAHIRO YAMADA

#	Article	IF	CITATIONS
19	Effect of photofunctionalization on fluoride-treated nanofeatured titanium. Journal of Biomaterials Applications, 2014, 28, 1200-1212.	1.2	36
20	Biodegradation Property of Betaâ€Tricalcium Phosphateâ€Collagen Composite in Accordance with Bone Formation: A Comparative Study with Bioâ€Oss Collagen® in a Rat Criticalâ€Size Defect Model. Clinical Implant Dentistry and Related Research, 2014, 16, 202-211.	1.6	43
21	Reduction of biofilm formation on titanium surface with ultraviolet-C pre-irradiation. Journal of Biomaterials Applications, 2014, 29, 161-171.	1.2	33
22	Earlyâ€stage osseointegration capability of a submicrofeatured titanium surface created by microroughening and anodic oxidation. Clinical Oral Implants Research, 2013, 24, 991-1001.	1.9	15
23	N-acetyl cysteine as an osteogenesis-enhancing molecule for bone regeneration. Biomaterials, 2013, 34, 6147-6156.	5.7	66
24	Success Rate, Healing Time, and Implant Stability of Photofunctionalized Dental Implants. International Journal of Oral and Maxillofacial Implants, 2013, 28, 1261-1271.	0.6	100
25	A Novel Combined Surgical Approach to Vertical Alveolar Ridge Augmentation with Titanium Mesh, Resorbable Membrane, and rhPDCF-BB: A Retrospective Consecutive Case Series. International Journal of Periodontics and Restorative Dentistry, 2013, 33, 437-445.	0.4	40
26	Anti-oxidant amino acid derivative as a multifunctional molecule for bone regeneration. Annals of Japan Prosthodontic Society, 2013, 5, 411-413.	0.0	0
27	N-acetyl cysteine improves affinity of beta-tricalcium phosphate granules for cultured osteoblast-like cells. Journal of Biomaterials Applications, 2012, 27, 27-36.	1.2	19
28	Bone integration capability of nanopolymorphic crystalline hydroxyapatite coated on titanium implants. International Journal of Nanomedicine, 2012, 7, 859.	3.3	37
29	Effect of N-acetylcysteine on Rat Dental Pulp Cells Cultured on Mineral Trioxide Aggregate. Journal of Endodontics, 2011, 37, 637-641.	1.4	39
30	Nanometer-thin TiO2 enhances skeletal muscle cell phenotype and behavior. International Journal of Nanomedicine, 2011, 6, 2191.	3.3	17
31	Improvement in the osteoblastic cellular response to a commercial collagen membrane and demineralized freeze-dried bone by an amino acid derivative: an in vitro study. Clinical Oral Implants Research, 2011, 22, 165-172.	1.9	18
32	Enhanced bone-integration capability of alkali- and heat-treated nanopolymorphic titanium in micro-to-nanoscale hierarchy. Biomaterials, 2011, 32, 7297-7308.	5.7	85
33	The inhibition of infection by wound pathogens on scaffold in tissue-forming process using N-acetyl cysteine. Biomaterials, 2011, 32, 8474-8485.	5.7	14
34	Effects of pico-to-nanometer-thin TiO2 coating on the biological properties of microroughened titanium. Biomaterials, 2011, 32, 8374-8384.	5.7	66
35	Bone integration capability of alkali- and heat-treated nanobimorphic Ti–15Mo–5Zr–3Al. Acta Biomaterialia, 2011, 7, 4267-4277.	4.1	49
36	Synergistic effects of UV photofunctionalization and micro-nano hybrid topography on the biological properties of titanium. Biomaterials, 2011, 32, 4358-4368.	5.7	83

MASAHIRO YAMADA

#	Article	IF	CITATIONS
37	Selective cell affinity of biomimetic micro-nano-hybrid structured TiO2 overcomes the biological dilemma of osteoblasts. Dental Materials, 2010, 26, 275-287.	1.6	54
38	<i>N</i> â€acetyl cysteine prevents polymethyl methacrylate bone cement extractâ€induced cell death and functional suppression of rat primary osteoblasts. Journal of Biomedical Materials Research - Part A, 2010, 92A, 285-296.	2.1	24
39	Nonvolatile buffer coating of titanium to prevent its biological aging and for drug delivery. Biomaterials, 2010, 31, 4818-4828.	5.7	27
40	Enhancement of bone–titanium integration profile with UV-photofunctionalized titanium in a gap healing model. Biomaterials, 2010, 31, 1546-1557.	5.7	125
41	Enhancement of osteoblast adhesion to UV-photofunctionalized titanium via an electrostatic mechanism. Biomaterials, 2010, 31, 2717-2727.	5.7	171
42	The enhanced characteristics of osteoblast adhesion to photofunctionalized nanoscale TiO2 layers on biomaterials surfaces. Biomaterials, 2010, 31, 3827-3839.	5.7	102
43	Amino acid derivative-mediated detoxification and functionalization of dual cure dental restorative material for dental pulp cell mineralization. Biomaterials, 2010, 31, 7213-7225.	5.7	22
44	Ultraviolet light treatment for the restoration of age-related degradation of titanium bioactivity. International Journal of Oral and Maxillofacial Implants, 2010, 25, 49-62.	0.6	59
45	Effect of ultraviolet photoactivation of titanium on osseointegration in a rat model. International Journal of Oral and Maxillofacial Implants, 2010, 25, 287-94.	0.6	39
46	Alleviation of commercial collagen sponge- and membrane-induced apoptosis and dysfunction in cultured osteoblasts by an amino acid derivative. International Journal of Oral and Maxillofacial Implants, 2010, 25, 939-46.	0.6	12
47	N-Acetyl cysteine restores viability and function of rat odontoblast-like cells impaired by polymethylmethacrylate dental resin extract. Redox Report, 2009, 14, 13-22.	1.4	27
48	N-Acetyl cysteine prevents suppression of oral fibroblast function on poly(methylmethacrylate) resin. Acta Biomaterialia, 2009, 5, 391-398.	4.1	45
49	Chemodynamics underlying N-acetyl cysteine-mediated bone cement monomer detoxification. Acta Biomaterialia, 2009, 5, 2963-2973.	4.1	29
50	The effect of UV-photofunctionalization on the time-related bioactivity of titanium and chromium–cobalt alloys. Biomaterials, 2009, 30, 4268-4276.	5.7	187
51	The effect of ultraviolet functionalization of titanium on integration with bone. Biomaterials, 2009, 30, 1015-1025.	5.7	444
52	N-acetyl cysteine (NAC)-mediated detoxification and functionalization of poly(methyl methacrylate) bone cement. Biomaterials, 2009, 30, 3378-3389.	5.7	76
53	Ultraviolet light-mediated photofunctionalization of titanium to promote human mesenchymal stem cell migration, attachment, proliferation and differentiation. Acta Biomaterialia, 2009, 5, 3247-3257.	4.1	160
54	Cell Biological Consideration of the Mechanism Underlying Polymethyl Methacrylate (PMMA) Dental Resin Cytotoxicity in Oral Mucosal Cells. Annals of Japan Prosthodontic Society, 2009, 1, 370-377.	0.0	2

#	Article	IF	CITATIONS
55	Microtopography of titanium suppresses osteoblastic differentiation but enhances chondroblastic differentiation of rat femoral periosteumâ€derived cells. Journal of Biomedical Materials Research - Part A, 2008, 87A, 380-391.	2.1	26
56	Histological and histomorphometrical comparative study of the degradation and osteoconductive characteristics of α- and β-tricalcium phosphate in block grafts. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2007, 82B, 139-148.	1.6	72