
Meng Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5418628/publications.pdf Version: 2024-02-01

MENCLU

#	Article	IF	CITATIONS
1	Removal characteristics of particulate matters and hazardous trace elements in a 660ÂMW ultra-low emission coal-fired power plant. Fuel, 2022, 311, 122535.	6.4	19
2	Influence of Feâ€modified Mn–Ce–Fe–Co–O x /P84 catalytic filter materials for lowâ€ŧemperature NO removal synergistic Hg 0 oxidation. Asia-Pacific Journal of Chemical Engineering, 2021, 16, e2677.	1.5	5
3	Effect of flue gas components on the NO removal and element mercury oxidation performance of Mn-modified low-temperature catalyst. International Journal of Chemical Reactor Engineering, 2021, 19, 1031-1043.	1.1	2
4	Performance and reaction mechanism for lowâ€ŧemperature NO _{<i>x</i>} catalytic synergistic Hg ⁰ oxidation of catalytic polyphenylene sulfide filter materials. Asia-Pacific Journal of Chemical Engineering, 2020, 15, e2403.	1.5	7
5	Pilot-Scale Study on Improving SNCR Denitrification Efficiency by Using Gas Additives. International Journal of Chemical Reactor Engineering, 2019, 17, .	1.1	1
6	A review on mercury in coal combustion process: Content and occurrence forms in coal, transformation, sampling methods, emission and control technologies. Progress in Energy and Combustion Science, 2019, 73, 26-64.	31.2	327
7	Influence of Interactions among Three Biomass Components on the Pyrolysis Behavior. Industrial & Engineering Chemistry Research, 2018, 57, 5241-5249.	3.7	69
8	Distribution and Speciation Transformation of Hazardous Trace Element Arsenic in Particulate Matter of a Coal-Fired Power Plant. Energy & amp; Fuels, 2018, 32, 6049-6055.	5.1	33
9	Investigation of mercury adsorption and cyclic mercury retention over MnO / \hat{I}^3 -Al2O3 sorbent. Chemosphere, 2018, 202, 358-365.	8.2	27
10	Effects on enrichment characteristics of trace elements in fly ash by adding halide salts into the coal during CFB combustion. Journal of the Energy Institute, 2018, 91, 214-221.	5.3	12
11	The Migration and Transformation of Heavy Metals in Sewage Sludge during Hydrothermal Carbonization Combined with Combustion. BioMed Research International, 2018, 2018, 1-11.	1.9	4
12	Thermal stability, chemical speciation and leaching characteristics of hazardous trace elements in FGD gypsum from coal-fired power plants. Fuel, 2018, 231, 94-100.	6.4	54
13	Chemical speciation and leaching characteristics of hazardous trace elements in coal and fly ash from coal-fired power plants. Fuel, 2018, 232, 463-469.	6.4	94
14	Effects of NH ₄ Br additive on mercury transformation and removal during CFB coal combustion. Journal of Chemical Technology and Biotechnology, 2017, 92, 391-398.	3.2	16
15	Migration Behavior of Trace Elements at a Coal-Fired Power Plant with Different Boiler Loads. Energy & Fuels, 2017, 31, 747-754.	5.1	41
16	Study on emission of hazardous trace elements in a 350ÂMW coal-fired power plant. Part 2. arsenic, chromium, barium, manganese, lead. Environmental Pollution, 2017, 226, 404-411.	7.5	82
17	Effect of Modified Sludge on the Particles Flocculation and Slurry Stability in the Co-slurry of Sludge and Petroleum Coke. International Journal of Chemical Reactor Engineering, 2017, 15, .	1.1	1
18	Study on the mercury emission and transformation in an ultra-low emission coal-fired power plant. Fuel, 2017, 199, 653-661.	6.4	103

Meng Liu

#	Article	IF	CITATIONS
19	Experimental characterization of enhanced SNCR process with carbonaceous gas additives. Chemosphere, 2017, 177, 149-156.	8.2	20
20	Partitioning and Emission of Hazardous Trace Elements in a 100 MW Coal-Fired Power Plant Equipped with Selective Catalytic Reduction, Electrostatic Precipitator, and Wet Flue Gas Desulfurization. Energy & Fuels, 2017, 31, 12383-12389.	5.1	29
21	Effects of Acidic Gases on Mercury Adsorption by Activated Carbon in Simulated Oxy-Fuel Combustion Flue Gas. Energy & Fuels, 2017, 31, 9745-9751.	5.1	39
22	Effect of the Amount of Sludge on Physicochemical Properties and Chemical Structure of Lowâ€rank Coal under Hydrothermal Conditions. Asia-Pacific Journal of Chemical Engineering, 2017, 12, 755-764.	1.5	2
23	Evaluation of wall slip effects on the flow characteristics of petroleum coke–water slurry flow along pipelines. Asia-Pacific Journal of Chemical Engineering, 2017, 12, 818-826.	1.5	0
24	Study on emission of hazardous trace elements in a 350ÂMW coal-fired power plant. Part 1. Mercury. Environmental Pollution, 2017, 229, 863-870.	7.5	69
25	Studies on Mercury Adsorption Species and Equilibrium on Activated Carbon Surface. Energy & Fuels, 2017, 31, 14211-14218.	5.1	25
26	Effects of organic and inorganic metal salts on thermogravimetric pyrolysis of biomass components. Korean Journal of Chemical Engineering, 2017, 34, 3077-3084.	2.7	33
27	Prediction of Synergic Effects of H ₂ 0, SO ₂ , and HCl on Mercury and Arsenic Transformation under Oxy-Fuel Combustion Conditions. Energy & Fuels, 2016, 30, 8463-8468.	5.1	16
28	Migration and Emission Characteristics of Trace Elements in a 660 MW Coal-Fired Power Plant of China. Energy & Fuels, 2016, 30, 5937-5944.	5.1	55
29	Experimental Study on Mercury Oxidation in a Fluidized Bed under O ₂ /CO ₂ and O ₂ /N ₂ Atmospheres. Energy & Fuels, 2016, 30, 5065-5070.	5.1	10
30	The effect of organic solvent thermal treatment on the physicochemical properties of lignite. Asia-Pacific Journal of Chemical Engineering, 2015, 10, 724-733.	1.5	9
31	Effects of the Types and Addition Amounts of Sludge on the True Rheological Properties of Petroleum Coke Slurry Flowing in Pipelines. International Journal of Chemical Reactor Engineering, 2015, 13, 311-322.	1.1	2
32	Effect of Surface Chemistry and Structure of Sludge Particles on Their Co-slurrying Ability with Petroleum Coke. International Journal of Chemical Reactor Engineering, 2014, 12, 429-439.	1.1	4
33	Effect of modified sludge on the rheological properties and co-slurry mechanism of petroleum coke–sludge slurry. Powder Technology, 2013, 243, 18-26.	4.2	30
34	Predicting the Liquid Film Thickness and Droplet–Gas Flow in Effervescent Atomization: Influence of Operating Conditions and Fluid Viscosity. International Journal of Chemical Reactor Engineering, 2013, 11, 393-405.	1.1	2
35	Influence of sewage sludge on the rheological properties of petroleum coke–water slurry. Asia-Pacific Journal of Chemical Engineering, 2013, 8, 453-460.	1.5	6
36	Slip flow of coal water slurries in pipelines. Fuel, 2010, 89, 1119-1126.	6.4	32

#	Article	IF	CITATIONS
37	Local resistance characteristics of highly concentrated coal-water slurry flow through fittings. Korean Journal of Chemical Engineering, 2009, 26, 569-575.	2.7	4