
Supachok Tanpichai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5418594/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Extraction of Nanofibrillated Cellulose from Water Hyacinth Using a High Speed Homogenizer. Journal of Natural Fibers, 2022, 19, 5676-5696.	1.7	19
2	Recent development of plant-derived nanocellulose in polymer nanocomposite foams and multifunctional applications: A mini-review. EXPRESS Polymer Letters, 2022, 16, 52-74.	1.1	19
3	Facile Single-step Preparation of Cellulose Nanofibers by TEMPO-mediated Oxidation and Their Nanocomposites. Journal of Natural Fibers, 2022, 19, 10094-10110.	1.7	12
4	Review of the recent developments in all-cellulose nanocomposites: Properties and applications. Carbohydrate Polymers, 2022, 286, 119192.	5.1	81
5	Superabsorbent cellulose-based hydrogels cross-liked with borax. Scientific Reports, 2022, 12, .	1.6	30
6	Chitosan coating for the preparation of multilayer coated paper for food-contact packaging: Wettability, mechanical properties, and overall migration. International Journal of Biological Macromolecules, 2022, 213, 534-545.	3.6	41
7	Surface and Interface Engineering for Nanocellulosic Advanced Materials. Advanced Materials, 2021, 33, e2002264.	11.1	239
8	Functionalized graphene nanoplatelets as a barrier enhancing filler in organic photovoltaic encapsulant. Journal of Applied Polymer Science, 2021, 138, 50351.	1.3	0
9	Mechanical and antibacterial properties of the chitosan coated cellulose paper for packaging applications: Effects of molecular weight types and concentrations of chitosan. International Journal of Biological Macromolecules, 2020, 155, 1510-1519.	3.6	51
10	Preparation and Characterization of Iron Oxide Decorated Graphene Nanoplatelets for Use as Barrier Enhancing Fillers in Polyurethane Based Solar Cell Encapsulant. Materials Today: Proceedings, 2020, 23, 703-711.	0.9	6
11	Optically transparent tough nanocomposites with a hierarchical structure of cellulose nanofiber networks prepared by the Pickering emulsion method. Composites Part A: Applied Science and Manufacturing, 2020, 132, 105811.	3.8	37
12	Water Hyacinth: A Sustainable Lignin-Poor Cellulose Source for the Production of Cellulose Nanofibers. ACS Sustainable Chemistry and Engineering, 2019, 7, 18884-18893.	3.2	82
13	Thermally Superstable Cellulosic-Nanorod-Reinforced Transparent Substrates Featuring Microscale Surface Patterns. ACS Nano, 2019, 13, 2015-2023.	7.3	13
14	Porosity, density and mechanical properties of the paper of steam exploded bamboo microfibers controlled by nanofibrillated cellulose. Journal of Materials Research and Technology, 2019, 8, 3612-3622.	2.6	68
15	Highly Thermalâ€Resilient AgNW Transparent Electrode and Optical Device on Thermomechanically Superstable Cellulose Nanorodâ€Reinforced Nanocomposites. Advanced Optical Materials, 2019, 7, 1900532.	3.6	14
16	Using borax as a cross-linking agent in cellulose-based hydrogels. IOP Conference Series: Materials Science and Engineering, 2019, 600, 012013.	0.3	8
17	Study on structural and thermal properties of cellulose microfibers isolated from pineapple leaves using steam explosion. Journal of Environmental Chemical Engineering, 2019, 7, 102836.	3.3	64
18	Allâ€cellulose composites from pineapple leaf microfibers: Structural, thermal, and mechanical properties. Polymer Composites, 2018, 39, 895-903.	2.3	33

SUPACHOK TANPICHAI

#	Article	IF	CITATIONS
19	Reinforcing abilities of microfibers and nanofibrillated cellulose in poly(lactic acid) composites. Science and Engineering of Composite Materials, 2018, 25, 395-401.	0.6	8
20	Crosslinked poly(vinyl alcohol) composite films with cellulose nanocrystals: Mechanical and thermal properties. Journal of Applied Polymer Science, 2018, 135, 45710.	1.3	41
21	Aligned-porous-structured poly(vinyl alcohol) foams with cellulose nanocrystals. AIP Conference Proceedings, 2018, , .	0.3	2
22	Transparency, moisture barrier property, and performance of the alternative solar cell encapsulants based on PU/PVDC blend reinforced with different types of cellulose nanocrystals. Materials for Renewable and Sustainable Energy, 2018, 7, 1.	1.5	14
23	Polyurethane/esterified cellulose nanocrystal composites as a transparent moisture barrier coating for encapsulation of dye sensitized solar cells. Journal of Applied Polymer Science, 2017, 134, 45010.	1.3	32
24	All-cellulose composite laminates prepared from pineapple leaf fibers treated with steam explosion and alkaline treatment. Journal of Reinforced Plastics and Composites, 2017, 36, 1146-1155.	1.6	24
25	Cross-linked polyvinyl alcohol (PVA) foams reinforced with cellulose nanocrystals (CNCs). Cellulose, 2016, 23, 1925-1938.	2.4	69
26	Cross-linked nanocomposite hydrogels based on cellulose nanocrystals and PVA: Mechanical properties and creep recovery. Composites Part A: Applied Science and Manufacturing, 2016, 88, 226-233.	3.8	130
27	Effect of clay content on morphology and processability of electrospun keratin/poly(lactic acid) nanofiber. International Journal of Biological Macromolecules, 2016, 85, 585-595.	3.6	30
28	Review of the recent developments in cellulose nanocomposite processing. Composites Part A: Applied Science and Manufacturing, 2016, 83, 2-18.	3.8	573
29	Effects of Two Different Cellulose Nanofiber Types on Properties of Poly(vinyl alcohol) Composite Films. Journal of Nanomaterials, 2015, 2015, 1-10.	1.5	27
30	Properties of Cellulose Microfibers Extracted from Pineapple Leaves by Steam Explosion. Advanced Materials Research, 2015, 1131, 231-234.	0.3	4
31	Keratin Extracted from Chicken Feather Waste: Extraction, Preparation, and Structural Characterization of the Keratin and Keratin/Biopolymer Films and Electrospuns. Journal of Polymers and the Environment, 2015, 23, 506-516.	2.4	83
32	Enhancement of thermal, mechanical and barrier properties of EVA solar cell encapsulating films by reinforcing with esterified cellulose nanofibres. Polymer Testing, 2015, 48, 12-22.	2.3	36
33	Mechanical Properties of All-Cellulose Composites Made from Pineapple Leaf Microfibers. Key Engineering Materials, 2015, 659, 453-457.	0.4	8
34	Effects of Preparation Parameters on Morphology of Cellulose Nanowhiskers. Advanced Materials Research, 2014, 1044-1045, 35-38.	0.3	1
35	Stress transfer in microfibrillated cellulose reinforced poly(vinyl alcohol) composites. Composites Part A: Applied Science and Manufacturing, 2014, 65, 186-191.	3.8	44
36	Stress-transfer in microfibrillated cellulose reinforced poly(lactic acid) composites using Raman spectroscopy. Composites Part A: Applied Science and Manufacturing, 2012, 43, 1145-1152.	3.8	51

#	Article	IF	CITATIONS
37	Micromechanics of TEMPO-Oxidized Fibrillated Cellulose Composites. ACS Applied Materials & Interfaces, 2012, 4, 331-337.	4.0	54
38	Effective Young's Modulus of Bacterial and Microfibrillated Cellulose Fibrils in Fibrous Networks. Biomacromolecules, 2012, 13, 1340-1349.	2.6	189
39	Physical Properties of PP/Recycled PET Blends Prepared by Pulverization Technique. Advanced Materials Research, 0, 488-489, 109-113.	0.3	1
40	Microfibrillated Cellulose Reinforced Poly(vinyl alcohol) Composites. Advanced Materials Research, 0, 747, 359-362.	0.3	4