
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5418419/publications.pdf Version: 2024-02-01

TOMASZ KILLEL

#	Article	IF	CITATIONS
1	A 0.5-V 95-dB rail-to-rail DDA for biosignal processing. AEU - International Journal of Electronics and Communications, 2022, 145, 154098.	1.7	13
2	A 0.3-V High Linear Rail-to-Rail Bulk-Driven OTA in 0.13 μm CMOS. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 2046-2050.	2.2	14
3	0.5 V Current-Mode Low-Pass Filter Based on Voltage Second Generation Current Conveyor for Bio-Sensor Applications. IEEE Access, 2022, 10, 12201-12207.	2.6	11
4	MIOTA-Based Filters for Noise and Motion Artifact Reductions in Biosignal Acquisition. IEEE Access, 2022, 10, 14325-14338.	2.6	16
5	Fully differential fifth-order dual-notch low-pass filter for portable EEG system. AEU - International Journal of Electronics and Communications, 2022, 146, 154122.	1.7	6
6	0.3-Volt Rail-to-Rail DDTA and Its Application in a Universal Filter and Quadrature Oscillator. Sensors, 2022, 22, 2655.	2.1	10
7	0.5 V Differential Difference Transconductance Amplifier and Its Application in Voltage-Mode Universal Filter. IEEE Access, 2022, 10, 43209-43220.	2.6	13
8	1.2 V Differential Difference Transconductance Amplifier and Its Application in Mixed-Mode Universal Filter. Sensors, 2022, 22, 3535.	2.1	10
9	Electronically Tunable Universal Filter and Quadrature Oscillator Using Low-Voltage Differential Difference Transconductance Amplifiers. IEEE Access, 2022, 10, 68965-68980.	2.6	8
10	Nanopower multiple-input DTMOS OTA and its applications to high-order filters for biomedical systems. AEU - International Journal of Electronics and Communications, 2021, 130, 153576.	1.7	17
11	Inductance Simulators and Their Application to the 4th Order Elliptic Lowpass Ladder Filter Using CMOS VD-DIBAs. Electronics (Switzerland), 2021, 10, 684.	1.8	16
12	Universal Filter Based on Compact CMOS Structure of VDDDA. Sensors, 2021, 21, 1683.	2.1	22
13	Multiple-Input Universal Filter and Quadrature Oscillator Using Multiple-Input Operational Transconductance Amplifiers. IEEE Access, 2021, 9, 56253-56263.	2.6	19
14	0.5-V High Linear and Wide Tunable OTA for Biomedical Applications. IEEE Access, 2021, 9, 103784-103794.	2.6	16
15	Voltage-Mode Elliptic Band-Pass Filter Based on Multiple-Input Transconductor. IEEE Access, 2021, 9, 32582-32590.	2.6	16
16	A Compact 0.3-V Class AB Bulk-Driven OTA. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2020, 28, 224-232.	2.1	59
17	0.3ÂV Differential Difference Current Conveyor Using Multiple-Input Bulk-Driven Technique. Circuits, Systems, and Signal Processing, 2020, 39, 3189-3205.	1.2	9
18	Guest Editorial: Special issue on low voltage low power integrated circuits and systems. Microelectronics Journal, 2020, 95, 104674.	1.1	0

#	Article	IF	CITATIONS
19	0.3-V Nanopower Biopotential Low-Pass Filter. IEEE Access, 2020, 8, 119586-119593.	2.6	12
20	Comment on "A 0.3â€V, 2.4â€nW and 100â€Hz fourthâ€order LPF for ECG signal processing― International Journal of Circuit Theory and Applications, 2020, 48, 2039-2039.	1.3	0
21	0.5 V Fully Differential Universal Filter Based on Multiple Input OTAs. IEEE Access, 2020, 8, 187832-187839.	2.6	18
22	Extremely low-voltage low-power differential difference current conveyor using multiple-input bulk-driven technique. AEU - International Journal of Electronics and Communications, 2020, 123, 153310.	1.7	10
23	A 0.3-V 98-dB Rail-to-Rail OTA in \$0.18~mu\$ m CMOS. IEEE Access, 2020, 8, 27459-27467.	2.6	59
24	0.5 V Fifth-Order Butterworth Low-Pass Filter Using Multiple-Input OTA for ECG Applications. Sensors, 2020, 20, 7343.	2.1	28
25	0.3-V Bulk-Driven Nanopower OTA-C Integrator in 0.18µm CMOS. Circuits, Systems, and Signal Processing, 2019, 38, 1333-1341.	1.2	28
26	0.5â€V bulk ―driven CMOS fully differential current feedback operational amplifier. IET Circuits, Devices and Systems, 2019, 13, 314-320.	0.9	12
27	0.5†V sixth-order Chebyshev band-pass filter based on multiple-input bulk-driven OTA. AEU - International Journal of Electronics and Communications, 2019, 111, 152930.	1.7	18
28	0.5ÂV Universal Filter Based on Multiple-Input FDDAs. Circuits, Systems, and Signal Processing, 2019, 38, 5896-5907.	1.2	9
29	A 0.5-V Bulk-Driven Active Voltage Attenuator. Circuits, Systems, and Signal Processing, 2019, 38, 5883-5895.	1.2	0
30	Comparative performance study of multiple-input bulk-driven and multiple-input bulk-driven quasi-floating-gate DDCCs. AEU - International Journal of Electronics and Communications, 2019, 108, 19-28.	1.7	19
31	0.3V Bulk-Driven Current Conveyor. IEEE Access, 2019, 7, 65122-65128.	2.6	18
32	A compact power-efficient 0.5†V fully differential difference amplifier. AEU - International Journal of Electronics and Communications, 2019, 105, 71-77.	1.7	5
33	Bulk-driven fully balanced second-generation current conveyor in 0.18â€ [−] µm CMOS. AEU - International Journal of Electronics and Communications, 2019, 104, 66-75.	1.7	9
34	Design and Implementation of a 0.3-V Differential Difference Amplifier. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, 66, 513-523.	3.5	44
35	Multiple-input bulk-driven quasi-floating-gate MOS transistor for low-voltage low-power integrated circuits. AEU - International Journal of Electronics and Communications, 2019, 100, 32-38.	1.7	45
36	Multiple-Input Bulk-Driven MOS Transistor for Low-Voltage Low-Frequency Applications. Circuits, Systems, and Signal Processing, 2019, 38, 2829-2845.	1.2	37

#	Article	IF	CITATIONS
37	A 0.3-V 37-nW 53-dB SNDR Asynchronous Delta–Sigma Modulator in 0.18- <inline-formula> <tex-math notation="LaTeX">\$mu\$ </tex-math> </inline-formula> m CMOS. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2019, 27, 316-325.	2.1	16
38	Design and implementation of sub 0.5â€V OTAs in 0.18â€î¼m CMOS. International Journal of Circuit Theory and Applications, 2018, 46, 1129-1143.	1.3	72
39	Lowâ€voltage fully differential difference transconductance amplifier. IET Circuits, Devices and Systems, 2018, 12, 73-81.	0.9	15
40	Guest Editorial: Low Voltage Low Power Integrated Circuits and Systems. IET Circuits, Devices and Systems, 2018, 12, 669-670.	0.9	0
41	Extremely Low-Voltage Bulk-Driven Tunable Transconductor. Circuits, Systems, and Signal Processing, 2017, 36, 511-524.	1.2	28
42	Sub 0.5-V bulk-driven LTA in 0.18 \hat{l} 4m CMOS. AEU - International Journal of Electronics and Communications, 2017, 77, 67-75.	1.7	8
43	Sub 0.5-V bulk-driven winner take all circuit based on a new voltage follower. Analog Integrated Circuits and Signal Processing, 2017, 90, 687-691.	0.9	9
44	Fullyâ€balanced fourâ€ŧerminal floating nullor for ultraâ€ŀow voltage analogue filter design. IET Circuits, Devices and Systems, 2017, 11, 173-182.	0.9	8
45	Low-Voltage Diode-Less Rectifier Based on Fully Differential Difference Transconductance Amplifier. Journal of Circuits, Systems and Computers, 2017, 26, 1750172.	1.0	7
46	Guest Editorial: Low-Voltage Integrated Circuits and Systems. Circuits, Systems, and Signal Processing, 2017, 36, 4769-4773.	1.2	0
47	Bulk-driven class AB fully-balanced differential difference amplifier. Analog Integrated Circuits and Signal Processing, 2017, 93, 179-187.	0.9	4
48	0.5ÂV bulk-driven ring amplifier based on master–slave technique. Analog Integrated Circuits and Signal Processing, 2017, 90, 189-197.	0.9	1
49	0.3â€V bulkâ€driven programmable gain amplifier in 0.18â€Âµm CMOS. International Journal of Circuit Theory and Applications, 2017, 45, 1077-1094.	1.3	9
50	Shadow filters based on DDCC. IET Circuits, Devices and Systems, 2017, 11, 631-637.	0.9	22
51	1-V Inverting and Non-inverting Loser-Take-All Circuit and Its Applications. Circuits, Systems, and Signal Processing, 2016, 35, 1507-1529.	1.2	3
52	Low-voltage low-power bulk-driven analog median filter. AEU - International Journal of Electronics and Communications, 2016, 70, 698-706.	1.7	5
53	Novel current controlled differential-input buffered output active element and its application in all-pass filter. , 2015, , .		3
54	1ÂV Rectifier Based on Bulk-Driven Quasi-Floating-Gate Differential Difference Amplifiers. Circuits, Systems, and Signal Processing, 2015, 34, 2077-2089.	1.2	22

#	Article	IF	CITATIONS
55	Sub-Volt Fully Balanced Differential Difference Amplifier. Journal of Circuits, Systems and Computers, 2015, 24, 1550005.	1.0	16
56	Bulkâ€driven adaptively biased OTA in 0.18 μm CMOS. Electronics Letters, 2015, 51, 458-460.	0.5	28
57	0.4-V bulk-driven differential-difference amplifier. Microelectronics Journal, 2015, 46, 362-369.	1.1	47
58	Digitally programmable low-voltage highly linear transconductor based on promising CMOS structure of differential difference current conveyor. AEU - International Journal of Electronics and Communications, 2015, 69, 1010-1017.	1.7	14
59	A digitally programmable gain amplifier for ultra-low-power applications. Analog Integrated Circuits and Signal Processing, 2015, 85, 433-443.	0.9	4
60	0.5-V DTMOS median filter. AEU - International Journal of Electronics and Communications, 2015, 69, 1733-1736.	1.7	5
61	0.5â€V bulkâ€driven OTA and its applications. International Journal of Circuit Theory and Applications, 2015, 43, 187-204.	1.3	32
62	A 0.5 V bulkâ€driven voltage follower/DC level shifter and its application in class AB output stage. International Journal of Circuit Theory and Applications, 2015, 43, 1566-1580.	1.3	17
63	0.4-V Bulk-Driven Operational Amplifier with Improved Input Stage. Circuits, Systems, and Signal Processing, 2015, 34, 1167-1185.	1.2	41
64	0.5â€V bulkâ€driven CMOS operational amplifier. IET Circuits, Devices and Systems, 2013, 7, 352-360.	0.9	73
65	Ultra low power analog standard cell for low frequency CMOS filters design. , 2008, , .		1
66	Current-Mode LP CMOS Active Filter for Very Low Frequency Applications. , 2007, , .		1
67	New fully-balanced OTA structure. Electronics Letters, 1992, 28, 498.	0.5	3