
Ga Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5418348/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Novel Nanocomposites Reinforced with Layered Double Hydroxide Platelets: Tribofilm Growth Compensating for Lubrication Insufficiency of Oil Films. ACS Sustainable Chemistry and Engineering, 2022, 10, 4929-4942.	3.2	12
2	Significant friction and wear-reduction role of attapulgite nanofibers compounded in PEEK-Based materials. Composites Science and Technology, 2022, 230, 109449.	3.8	9
3	Significance of g-C3N4 nanosheets for enhancing tribological performance of epoxy subjected to starved lubrication. Tribology International, 2022, 174, 107762.	3.0	9
4	Tribological properties of polyimide composites reinforced with fibers rubbing against Al2O3. Friction, 2021, 9, 301-314.	3.4	19
5	MXene-Al2O3 synergize to reduce friction and wear on epoxy-steel contacts lubricated with ultra-low sulfur diesel. Tribology International, 2021, 153, 106588.	3.0	50
6	Role of SiC submicron-particles on tribofilm growth at water-lubricated interface of polyurethane/epoxy interpenetrating network (PU/EP IPN) composites and steel. Tribology International, 2021, 153, 106611.	3.0	12
7	BN–SiC ensembles to form tribofilm with excellent shielding effects in PEEK- stainless steel contacts for artificial joint. Tribology International, 2021, 156, 106834.	3.0	8
8	Tribological behaviors of novel epoxy nanocomposites filled with solvent-free ionic SiO2 nanofluids. Composites Part B: Engineering, 2021, 215, 108751.	5.9	28
9	A novel eco-friendly water lubricant based on in situ synthesized water-soluble graphitic carbon nitride. Chemical Engineering Journal, 2021, 420, 129891.	6.6	32
10	Role of tribochemistry reactions of B ₄ C on tribofilm growth at a PEEK–steel interface in simulated body fluids. RSC Advances, 2021, 11, 32717-32729.	1.7	1
11	Solvent-free ionic silica nanofluids: Smart lubrication materials exhibiting remarkable responsiveness to weak electrical stimuli. Chemical Engineering Journal, 2020, 383, 123202.	6.6	49
12	Role of reinforcement types and silica nanoparticles on tribofilm growth at PTFE-Steel interface. Tribology International, 2020, 143, 106035.	3.0	30
13	Tribofilm growth at sliding interfaces of PEEK composites and steel at low velocities. Tribology International, 2020, 151, 106456.	3.0	20
14	Distinct tribological behaviors of polyimide composites when rubbing against various metals. Tribology International, 2020, 146, 106254.	3.0	19
15	Significant improvement on tribological performance of polyimide composites by tuning the tribofilm nanostructures. Journal of Materials Processing Technology, 2020, 281, 116602.	3.1	27
16	Role of carbon nanotubes on growth of a nanostructured double-deck tribofilm yielding excellent self-lubrication performance. Carbon, 2020, 161, 445-455.	5.4	25
17	Comparative study of tribological properties of carbon fibers and aramid particles reinforced polyimide composites under dry and sea water lubricated conditions. Wear, 2019, 436-437, 203001.	1.5	24
18	Tuning the tribofilm nanostructures of polymer-on-metal joint replacements for simultaneously enhancing anti-wear performance and corrosion resistance. Acta Biomaterialia, 2019, 87, 285-295.	4.1	23

Ga Zhang

#	Article	IF	CITATIONS
19	Regulating microstructures of interpenetrating polyurethane-epoxy networks towards high-performance water-lubricated bearing materials. Tribology International, 2019, 131, 454-464.	3.0	30
20	Solvent-free ionic nanofluids based on graphene oxide-silica hybrid as high-performance lubricating additive. Applied Surface Science, 2019, 471, 482-493.	3.1	60
21	Soft/Hard-Coupled Amphiphilic Polymer Nanospheres for Water Lubrication. ACS Applied Materials & Interfaces, 2018, 10, 9178-9187.	4.0	56
22	PEEK reinforced with low-loading 2D graphitic carbon nitride nanosheets: High wear resistance under harsh lubrication conditions. Composites Part A: Applied Science and Manufacturing, 2018, 109, 507-516.	3.8	44
23	Significance of an in-situ generated boundary film on tribocorrosion behavior of polymer-metal sliding pair. Journal of Colloid and Interface Science, 2018, 518, 263-276.	5.0	18
24	Comparative study of tribochemistry of ultrahigh molecular weight polyethylene, polyphenylene sulfide and polyetherimide in tribo-composites. Journal of Colloid and Interface Science, 2018, 514, 615-624.	5.0	35
25	Covalently attached mesoporous silica–ionic liquid hybrid nanomaterial as water lubrication additives for polymer-metal tribopair. Tribology International, 2018, 119, 721-730.	3.0	24
26	High lubricity and electrical responsiveness of solvent-free ionic SiO ₂ nanofluids. Journal of Materials Chemistry A, 2018, 6, 2817-2827.	5.2	67
27	Extraordinarily Low Friction and Wear of Epoxy-Metal Sliding Pairs Lubricated with Ultra-Low Sulfur Diesel. ACS Sustainable Chemistry and Engineering, 2018, 6, 15781-15790.	3.2	24
28	Switching Brake Materials To Extremely Wear-Resistant Self-Lubrication Materials via Tuning Interface Nanostructures. ACS Applied Materials & Interfaces, 2018, 10, 19173-19181.	4.0	28
29	Significantly enhancing tribological performance of epoxy by filling with ionic liquid functionalized graphene oxide. Carbon, 2018, 136, 309-319.	5.4	68
30	Role of hydrolysable nanoparticles on tribological performance of PPS-steel sliding pair lubricated with sea water. Tribology International, 2018, 127, 147-156.	3.0	13
31	Impact of reinforcing fillers' properties on transfer film structure and tribological performance of POM-based materials. Tribology International, 2017, 109, 58-68.	3.0	34
32	Comparative Study on the Wear Behaviour of Two High-Temperature-Resistant Polymers. Tribology Letters, 2017, 65, 1.	1.2	17
33	Ultralow Friction and Wear of Polymer Composites under Extreme Unlubricated Sliding Conditions. Advanced Materials Interfaces, 2017, 4, 1601171.	1.9	50
34	Significantly enhanced wear resistance of PEEK by simply filling with modified graphitic carbon nitride. Materials and Design, 2017, 129, 192-200.	3.3	38
35	Tribological performance of PPS composites under diesel lubrication conditions. Tribology International, 2017, 115, 338-347.	3.0	26
36	Distinct tribological mechanisms of various oxide nanoparticles added in PEEK composite reinforced with carbon fibers. Composites Part A: Applied Science and Manufacturing, 2017, 97, 19-30.	3.8	54

Ga Zhang

#	Article	IF	CITATIONS
37	Hybrid effect of ZnS sub-micrometer particles and reinforcing fibers on tribological performance of polyimide under oil lubrication conditions. Wear, 2017, 380-381, 86-95.	1.5	30
38	Significance of combined functional nanoparticles for enhancing tribological performance of PEEK reinforced with carbon fibers. Composites Part A: Applied Science and Manufacturing, 2017, 102, 400-413.	3.8	54
39	Comparative study on tribological mechanisms of polyimide composites when sliding against medium carbon steel and NiCrBSi. Journal of Colloid and Interface Science, 2017, 506, 415-428.	5.0	36
40	Formation mechanisms and functionality of boundary films derived from water lubricated polyoxymethylene/hexagonal boron nitride nanocomposites. Materials and Design, 2017, 115, 276-286.	3.3	28
41	Tribological investigations of glass fiber reinforced epoxy composites under oil lubrication conditions. Tribology International, 2016, 103, 208-217.	3.0	29
42	Enhancing the tribological performance of PEEK exposed to water-lubrication by filling goethite (α-FeOOH) nanoparticles. RSC Advances, 2016, 6, 51247-51256.	1.7	20
43	Distinct tribological mechanisms of silica nanoparticles in epoxy composites reinforced with carbon nanotubes, carbon fibers and glass fibers. Tribology International, 2016, 104, 225-236.	3.0	56
44	Impact of counterpart materials and nanoparticles on the transfer film structures of polyimide composites. Materials and Design, 2016, 109, 367-377.	3.3	38
45	Exploring the influence of counterpart materials on tribological behaviors of epoxy composites. Tribology International, 2016, 103, 566-573.	3.0	19
46	Tribological Behaviors of Carbon Fiber Reinforced Epoxy Composites Under PAO Lubrication Conditions. Tribology Letters, 2016, 62, 1.	1.2	18