
Xianli Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5418260/publications.pdf Version: 2024-02-01

XIANI I XII

#	Article	IF	CITATIONS
1	Local and global factors controlling waterâ€energy balances within the Budyko framework. Geophysical Research Letters, 2013, 40, 6123-6129.	4.0	214
2	Monthly streamflow forecasting using Gaussian Process Regression. Journal of Hydrology, 2014, 511, 72-81.	5.4	187
3	Estimation of water provision service for monsoon catchments of South China: Applicability of the InVEST model. Landscape and Urban Planning, 2019, 182, 133-143.	7.5	182
4	Quantifying the impacts of climate and human activities on water and sediment discharge in a karst region of southwest China. Journal of Hydrology, 2016, 542, 836-849.	5.4	144
5	Towards spatial geochemical modelling: Use of geographically weighted regression for mapping soil organic carbon contents in Ireland. Applied Geochemistry, 2011, 26, 1239-1248.	3.0	130
6	Effects of vegetation restoration on soil quality in degraded karst landscapes of southwest China. Science of the Total Environment, 2019, 650, 2657-2665.	8.0	127
7	ls southwestern China experiencing more frequent precipitation extremes?. Environmental Research Letters, 2014, 9, 064002.	5.2	122
8	Karst catchments exhibited higher degradation stress from climate change than the non-karst catchments in southwest China: An ecohydrological perspective. Journal of Hydrology, 2016, 535, 173-180.	5.4	83
9	Relative importance of climate and land surface changes on hydrologic changes in the US Midwest since the 1930s: Implications for biofuel production. Journal of Hydrology, 2013, 497, 110-120.	5.4	77
10	Construction and optimization strategy of ecological security pattern in a rapidly urbanizing region: A case study in central-south China. Ecological Indicators, 2022, 136, 108604.	6.3	72
11	Modeling the change in soil organic carbon of grassland in response to climate change: Effects of measured versus modelled carbon pools for initializing the Rothamsted Carbon model. Agriculture, Ecosystems and Environment, 2011, 140, 372-381.	5.3	63
12	A new drought index that considers the joint effects of climate and land surface change. Water Resources Research, 2017, 53, 3262-3278.	4.2	60
13	Spatial variability of hydraulic conductivity and bulk density along a blanket peatland hillslope. Hydrological Processes, 2012, 26, 1527-1537.	2.6	58
14	Effects of "Grain for Green―program on soil hydrologic functions in karst landscapes, southwestern China. Agriculture, Ecosystems and Environment, 2017, 247, 120-129.	5.3	58
15	Effectiveness of erosion control measures along the Qinghai–Tibet highway, Tibetan plateau, China. Transportation Research, Part D: Transport and Environment, 2006, 11, 302-309.	6.8	54
16	Adapting & testing use of USLE K factor for agricultural soils in China. Agriculture, Ecosystems and Environment, 2019, 269, 148-155.	5.3	51
17	Decreasing spatial variability in precipitation extremes in southwestern China and the local/largeâ€scale influencing factors. Journal of Geophysical Research D: Atmospheres, 2015, 120, 6480-6488.	3.3	50
18	Improvements in soil quality with vegetation succession in subtropical China karst. Science of the Total Environment, 2021, 775, 145876.	8.0	49

XIANLI XU

#	Article	IF	CITATIONS
19	Runoff and water erosion on road side-slopes: Effects of rainfall characteristics and slope length. Transportation Research, Part D: Transport and Environment, 2009, 14, 497-501.	6.8	44
20	Effects of lithology and geomorphology on sediment yield in karst mountainous catchments. Geomorphology, 2019, 343, 119-128.	2.6	44
21	Estimation of soil organic carbon stock and its spatial distribution in the Republic of Ireland. Soil Use and Management, 2011, 27, 156-162.	4.9	43
22	State-space prediction of spring discharge in a karst catchment in southwest China. Journal of Hydrology, 2017, 549, 264-276.	5.4	43
23	Sediment yield is closely related to lithology and landscape properties in heterogeneous karst watersheds. Journal of Hydrology, 2019, 568, 437-446.	5.4	43
24	UAV based soil moisture remote sensing in a karst mountainous catchment. Catena, 2019, 174, 478-489.	5.0	42
25	Analysis of single-ring infiltrometer data for soil hydraulic properties estimation: Comparison of BEST and Wu methods. Agricultural Water Management, 2012, 107, 34-41.	5.6	41
26	Monthly sediment discharge changes and estimates in a typical karst catchment of southwest China. Journal of Hydrology, 2017, 555, 95-107.	5.4	41
27	Reconstructing recent changes in sediment yields from a typical karst watershed in southwest China. Agriculture, Ecosystems and Environment, 2019, 269, 62-70.	5.3	39
28	Annual Runoff is Highly Linked to Precipitation Extremes in Karst Catchments of Southwest China. Journal of Hydrometeorology, 2017, 18, 2745-2759.	1.9	38
29	Characteristics of the water–energy–carbon fluxes of irrigated pear (Pyrus bretschneideri Rehd) orchards in the North China Plain. Agricultural Water Management, 2013, 128, 140-148.	5.6	36
30	The global distribution of Earth's critical zone and its controlling factors. Geophysical Research Letters, 2017, 44, 3201-3208.	4.0	35
31	Comparing evapotranspiration characteristics and environmental controls for three agroforestry ecosystems in a subtropical humid karst area. Journal of Hydrology, 2018, 563, 1042-1050.	5.4	33
32	Estimation and analysis of soil hydraulic properties through infiltration experiments: comparison of BEST and DL fitting methods. Soil Use and Management, 2009, 25, 354-361.	4.9	32
33	Assessing the impact of climate variability on catchment water balance and vegetation cover. Hydrology and Earth System Sciences, 2012, 16, 43-58.	4.9	30
34	Biogeographical patterns of biomass allocation in leaves, stems and roots in China's forests. Scientific Reports, 2015, 5, 15997.	3.3	30
35	Estimation of greenhouse gases (N2O, CH4 and CO2) from no-till cropland under increased temperature and altered precipitation regime: a DAYCENT model approach. Global and Planetary Change, 2014, 118, 106-114.	3.5	28
36	Dominant factors controlling runoff coefficients in karst watersheds. Journal of Hydrology, 2020, 590, 125486.	5.4	28

Xianli Xu

#	Article	IF	CITATIONS
37	Spatial Downscaling of TRMM Precipitation Product Using a Combined Multifractal and Regression Approach: Demonstration for South China. Water (Switzerland), 2015, 7, 3083-3102.	2.7	27
38	Dam construction impacts on multiscale characterization of sediment discharge in two typical karst watersheds of southwest China. Journal of Hydrology, 2018, 558, 42-54.	5.4	27
39	Evaluation of high-resolution satellite rainfall products using rain gauge data over complex terrain in southwest China. Theoretical and Applied Climatology, 2015, 119, 203-219.	2.8	26
40	Similarity of the temporal pattern of soil moisture across soil profile in karst catchments of southwestern China. Journal of Hydrology, 2017, 555, 659-669.	5.4	26
41	Effects of Napier grass management on soil hydrologic functions in a karst landscape, southwestern China. Soil and Tillage Research, 2016, 157, 83-92.	5.6	25
42	Fingerprinting sediment sources in a typical karst catchment of southwest China. International Soil and Water Conservation Research, 2020, 8, 277-285.	6.5	25
43	Relationships between lithology, topography, soil, and vegetation, and their implications for karst vegetation restoration. Catena, 2022, 209, 105831.	5.0	25
44	Developing pedotransfer functions to estimate the S-index for indicating soil quality. Ecological Indicators, 2017, 83, 338-345.	6.3	24
45	Decreasing spatial variability of drought in southwest China during 1959–2013. International Journal of Climatology, 2017, 37, 4610-4619.	3.5	23
46	Why do karst catchments exhibit higher sensitivity to climate change? Evidence from a modified Budyko model. Advances in Water Resources, 2018, 122, 238-250.	3.8	23
47	Spatial and Seasonal Variation of Dissolved Organic Carbon (DOC) Concentrations in Irish Streams: Importance of Soil and Topography Characteristics. Environmental Management, 2014, 53, 959-967.	2.7	22
48	Hysteresis in sap flow and its controlling mechanisms for a deciduous broad-leaved tree species in a humid karst region. Science China Earth Sciences, 2019, 62, 1744-1755.	5.2	22
49	A UAV-based framework for crop lodging assessment. European Journal of Agronomy, 2021, 123, 126201.	4.1	22
50	The Contributions of the Largest Erosive Events to Sediment Yields in Karst Catchments. Water Resources Research, 2020, 56, e2019WR025839.	4.2	21
51	Development of multi-metamodels to support surface water quality management and decision making. Environmental Earth Sciences, 2015, 73, 423-434.	2.7	18
52	An Improved Optimization Scheme for Representing Hillslopes and Depressions in Karst Hydrology. Water Resources Research, 2020, 56, e2019WR026038.	4.2	18
53	Can precipitation extremes explain variability in runoff and sediment yield across heterogeneous karst watersheds?. Journal of Hydrology, 2021, 596, 125698.	5.4	18
54	Enhancing pedotransfer functions (PTFs) using soil spectral reflectance data for estimating saturated hydraulic conductivity in southwestern China. Catena, 2017, 158, 350-356.	5.0	17

XIANLI XU

#	Article	IF	CITATIONS
55	Decoupling the influence of vegetation and climate on intra-annual variability in runoff in karst watersheds. Science of the Total Environment, 2022, 824, 153874.	8.0	17
56	Revealing the scale-specific influence of meteorological controls on soil water content in a karst depression using wavelet coherency. Agriculture, Ecosystems and Environment, 2019, 279, 89-99.	5.3	16
57	Fighting against water crisis in China—A glimpse of water regime shift at county level. Environmental Science and Policy, 2016, 61, 33-41.	4.9	14
58	Sap flow and plant water sources for typical vegetation in a subtropical humid karst area of southwest China. Hydrological Processes, 2021, 35, e14090.	2.6	14
59	Effect of Deep Vertical Rotary Tillage on Soil Properties and Sugarcane Biomass in Rainfed Dry-Land Regions of Southern China. Sustainability, 2020, 12, 10199.	3.2	13
60	Revisiting Continental U.S. Hydrologic Change in the Latter Half of the 20th Century. Water Resources Management, 2013, 27, 4337-4348.	3.9	12
61	New drought index indicates that land surface changes might have enhanced drying tendencies over the Loess Plateau. Ecological Indicators, 2018, 89, 716-724.	6.3	12
62	Scale-specific controls of sediment yield in karst watersheds. Journal of Hydrology, 2020, 583, 124301.	5.4	11
63	Improving modeling of ecosystem gross primary productivity through re-optimizing temperature restrictions on photosynthesis. Science of the Total Environment, 2021, 788, 147805.	8.0	11
64	Modelling soil thickness using environmental attributes in karst watersheds. Catena, 2022, 212, 106053.	5.0	11
65	Prediction of profile soil moisture for one land use using measurements at a soil depth of other land uses in a karst depression. Journal of Soils and Sediments, 2019, 19, 1479-1489.	3.0	10
66	Difference in hydraulic resistance between planted forest and naturally regenerated forest and its implications for ecosystem restoration in subtropical karst landscapes. Journal of Hydrology, 2021, 596, 126093.	5.4	10
67	Soil erosion impacts on nutrient deposition in a typical karst watershed. Agriculture, Ecosystems and Environment, 2021, 322, 107649.	5.3	10
68	How does afforestation affect the hydrology of a blanket peatland? A modelling study. Hydrological Processes, 2013, 27, 3577-3588.	2.6	9
69	Comparing ET-VPD hysteresis in three agroforestry ecosystems in a subtropical humid karst area. Agricultural Water Management, 2018, 208, 454-464.	5.6	9
70	Integrating the InVEST and SDSM Model for Estimating Water Provision Services in Response to Future Climate Change in Monsoon Basins of South China. Water (Switzerland), 2020, 12, 3199.	2.7	7
71	Global patterns and ecological implications of diurnal hysteretic response of ecosystem water consumption to vapor pressure deficit. Agricultural and Forest Meteorology, 2022, 314, 108785.	4.8	7
72	Using four approaches to separate the effects of climate change and human activities on sediment discharge in karst watersheds. Catena, 2022, 212, 106118.	5.0	7

XIANLI XU

#	Article	IF	CITATIONS
73	Spatial distribution of land cover and vegetation activity along topographic gradient in an arid river valley, SW China. Journal of Mountain Science, 2009, 6, 274-285.	2.0	6
74	Potential Economic Impacts of Environmental Flows Following a Possible Listing of Endangered Texas Freshwater Mussels. Journal of the American Water Resources Association, 2014, 50, 1081-1101.	2.4	6
75	Field scale soil water prediction based on areal soil moisture measurements using cosmic-ray neutron sensing in a karst landscape. Journal of Hydrology, 2022, 605, 127395.	5.4	6
76	Spatial variability of remotely sensed soil moisture in a temperateâ€humid grassland catchment. Ecohydrology, 2012, 5, 668-676.	2.4	5
77	A Modified Evaporation Model Indicates That the Effects of Air Warming on Global Drying Trends Have Been Overestimated. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035153.	3.3	4
78	Multiscale relationships between monthly sediment load and pertinent factors in a typical karst mountainous watershed. Journal of Hydrology, 2022, 607, 127474.	5.4	4
79	Improving prediction accuracy of soil water storage through reducing sampling frequency. European Journal of Agronomy, 2022, 136, 126502.	4.1	4
80	Hydrologic responses to rapid urbanization for small and medium sized cities: a case study of Yiwu, China. Environmental Earth Sciences, 2020, 79, 1.	2.7	3
81	Tropical Plant Species Living Under P Limitation Show Signs of Greater Resistance to Drought. Geophysical Research Letters, 2022, 49, .	4.0	2
82	Use of gravimetric measurements to calibrate thermal dissipation probes with stem segments. Hydrological Processes, 2022, 36, .	2.6	1