Harold A Scheraga

List of Publications by Citations

Source: https://exaly.com/author-pdf/5417737/harold-a-scheraga-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

328
papers

22,455
citations

71
h-index

344
ext. papers

23,534
ext. citations

71
h-index

4.6
avg, IF

6.62
L-index

#	Paper	IF	Citations
328	Energy parameters in polypeptides. VII. Geometric parameters, partial atomic charges, nonbonded interactions, hydrogen bond interactions, and intrinsic torsional potentials for the naturally occurring amino acids. <i>The Journal of Physical Chemistry</i> , 1975 , 79, 2361-2381		1453
327	Structure of Water and Hydrophobic Bonding in Proteins. I. A Model for the Thermodynamic Properties of Liquid Water. <i>Journal of Chemical Physics</i> , 1962 , 36, 3382-3400	3.9	949
326	Energy parameters in polypeptides. 9. Updating of geometrical parameters, nonbonded interactions, and hydrogen bond interactions for the naturally occurring amino acids. <i>The Journal of Physical Chemistry</i> , 1983 , 87, 1883-1887		902
325	Global optimization of clusters, crystals, and biomolecules. <i>Science</i> , 1999 , 285, 1368-72	33.3	881
324	THE STRUCTURE OF WATER AND HYDROPHOBIC BONDING IN PROTEINS. III. THE THERMODYNAMIC PROPERTIES OF HYDROPHOBIC BONDS IN PROTEINS1,2. <i>The Journal of Physical Chemistry</i> , 1962 , 66, 1773-1789		830
323	Energy parameters in polypeptides. 10. Improved geometrical parameters and nonbonded interactions for use in the ECEPP/3 algorithm, with application to proline-containing peptides. <i>The Journal of Physical Chemistry</i> , 1992 , 96, 6472-6484		619
322	The structure of water and the thermodynamic properties of aqueous solutions. <i>Journal of Chemical Physics</i> , 1970 , 6, Suppl:487-592	3.9	567
321	Disulfide bonds and protein folding. <i>Biochemistry</i> , 2000 , 39, 4207-16	3.2	487
320	Conformational Analysis of Macromolecules. III. Helical Structures of Polyglycine and Poly-L-Alanine. <i>Journal of Chemical Physics</i> , 1966 , 45, 2091-2101	3.9	391
319	Structure of Water and Hydrophobic Bonding in Proteins. IV. The Thermodynamic Properties of Liquid Deuterium Oxide. <i>Journal of Chemical Physics</i> , 1964 , 41, 680-689	3.9	351
318	Intermolecular potentials from crystal data. 6. Determination of empirical potentials for O-HO = C hydrogen bonds from packing configurations. <i>The Journal of Physical Chemistry</i> , 1984 , 88, 6231-6233		332
317	METHOD FOR CALCULATION INTERNAL ROTATION BARRIERS. <i>Journal of Chemical Physics</i> , 1965 , 42, 2209-15	3.9	300
316	Conformation of analysis of macromolecules. IV. Helical structures of poly-L-alanine, poly-L-valine, poly-beta-methyl-L-aspartate, poly-gamma-methyl-L-glutamate, and poly-L-tyrosine. <i>Journal of Chemical Physics</i> , 1967 , 46, 4410-26	3.9	285
315	Protein-folding dynamics: overview of molecular simulation techniques. <i>Annual Review of Physical Chemistry</i> , 2007 , 58, 57-83	15.7	278
314	Protein folding. <i>Quarterly Reviews of Biophysics</i> , 1977 , 10, 239-52	7	261
313	Influence of local interactions on protein structure. I. Conformational energy studies of N-acetyl-N'-methylamides of Pro-X and X-Pro dipeptides. <i>Biopolymers</i> , 1977 , 16, 811-43	2.2	247
312	Phase transitions in one dimension and the helix-coil transition in polyamino acids. <i>Journal of Chemical Physics</i> , 1966 , 45, 1456-63	3.9	242

(1973-2005)

311	Ab initio simulations of protein-folding pathways by molecular dynamics with the united-residue model of polypeptide chains. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 2362-7	11.5	230
310	Principal component analysis for protein folding dynamics. <i>Journal of Molecular Biology</i> , 2009 , 385, 312	- 2:9 5	224
309	Conformational Analysis of Macromolecules. II. The Rotational Isomeric States of the Normal Hydrocarbons. <i>Journal of Chemical Physics</i> , 1966 , 44, 3054-3069	3.9	219
308	Statistical and energetic analysis of side-chain conformations in oligopeptides. <i>International Journal of Peptide and Protein Research</i> , 1983 , 22, 1-15		214
307	Cumulant-based expressions for the multibody terms for the correlation between local and electrostatic interactions in the united-residue force field. <i>Journal of Chemical Physics</i> , 2001 , 115, 2323-	2347	209
306	Analysis of the Contribution of Internal Vibrations to the Statistical Weights of Equilibrium Conformations of Macromolecules. <i>Journal of Chemical Physics</i> , 1969 , 51, 4751-4767	3.9	208
305	Occurrence of a phase transition in nucleic acid models. <i>Journal of Chemical Physics</i> , 1966 , 45, 1464-9	3.9	196
304	Non-Newtonian Viscosity of Solutions of Ellipsoidal Particles. <i>Journal of Chemical Physics</i> , 1955 , 23, 152	6315532	189
303	Oxidative folding of proteins. Accounts of Chemical Research, 2000, 33, 805-12	24.3	174
302	Conformational energy studies of beta-sheets of model silk fibroin peptides. I. Sheets of poly(Ala-Gly) chains. <i>Biopolymers</i> , 1991 , 31, 1529-41	2.2	169
301	Modification and optimization of the united-residue (UNRES) potential energy function for canonical simulations. I. Temperature dependence of the effective energy function and tests of the optimization method with single training proteins. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 260-85	3.4	160
300	On the multiple-minima problem in the conformational analysis of polypeptides. II. An electrostatically driven Monte Carlo methodtests on poly(L-alanine). <i>Biopolymers</i> , 1988 , 27, 1283-303	2.2	148
299	Preferred conformation of the tert-butoxycarbonyl-amino group in peptides. <i>International Journal of Peptide and Protein Research</i> , 1980 , 16, 156-72		146
298	Regeneration of bovine pancreatic ribonuclease A. 1. Steady-state distribution. <i>Biochemistry</i> , 1993 , 32, 2671-9	3.2	142
297	Computation of the sterically allowed conformations of peptides. <i>Biopolymers</i> , 1966 , 4, 369-407	2.2	140
296	Influence of water structure and of hydrophobic interactions on the strength of side-chain hydrogen bonds in proteins. <i>Biopolymers</i> , 1963 , 1, 43-69	2.2	136
295	A comparative study of the simulated-annealing and Monte Carlo-with-minimization approaches to the minimum-energy structures of polypeptides: [Met]-enkephalin. <i>Journal of Computational Chemistry</i> , 1991 , 12, 594-605	3.5	135
294	Energy Parameters in Polypeptides. VI. Conformational Energy Analysis of the N-Acetyl N?-Methyl Amides of the Twenty Naturally Occurring Amino Acids. <i>Israel Journal of Chemistry</i> , 1973 , 11, 121-152	3.4	129

293	Prediction of the native conformation of a polypeptide by a statistical-mechanical procedure. I. Backbone structure of enkephalin. <i>Biopolymers</i> , 1985 , 24, 1391-436	2.2	128
292	Conformational analysis of macromolecules. V. Helical structures of poly-L-aspartic acid and poly-L-glutamic acid, and related compounds. <i>Journal of Chemical Physics</i> , 1968 , 49, 2713-26	3.9	127
291	Theoretical determination of sterically allowed conformations of a polypeptide chain by a computer method. <i>Biopolymers</i> , 1965 , 3, 155-184	2.2	126
290	Statistical mechanics of noncovalent bonds in polyamino acids. VIII. Covalent loops in proteins. <i>Biopolymers</i> , 1965 , 3, 379-399	2.2	123
289	Cooperative interactions in single-strand oligomers of adenylic acid. <i>Biopolymers</i> , 1966 , 4, 223-35	2.2	123
288	Molecular dynamics with the united-residue model of polypeptide chains. II. Langevin and Berendsen-bath dynamics and tests on model alpha-helical systems. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 13798-810	3.4	121
287	Use of buildup and energy-minimization procedures to compute low-energy structures of the backbone of enkephalin. <i>Biopolymers</i> , 1985 , 24, 1437-47	2.2	115
286	A fast adaptive multigrid boundary element method for macromolecular electrostatic computations in a solvent. <i>Journal of Computational Chemistry</i> , 1997 , 18, 569-583	3.5	113
285	Determination of net atomic charges using a modified partial equalization of orbital electronegativity method. 1. Application to neutral molecules as models for polypeptides. <i>The Journal of Physical Chemistry</i> , 1990 , 94, 4732-4739		109
284	Deamidation of the asparaginyl-glycyl sequence. <i>International Journal of Peptide and Protein Research</i> , 1986 , 28, 79-84		105
283	Calorimetric measurement of enthalpy change in the isothermal helixcoil transition of poly-L-lysine in aqueous solution. <i>Biopolymers</i> , 1971 , 10, 657-80	2.2	102
282	Molecular dynamics with the united-residue model of polypeptide chains. I. Lagrange equations of motion and tests of numerical stability in the microcanonical mode. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 13785-97	3.4	101
281	Proline-induced constraints in alpha-helices. <i>Biopolymers</i> , 1987 , 26, 1587-600	2.2	100
2 80	A new force field (ECEPP-05) for peptides, proteins, and organic molecules. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 5025-44	3.4	96
279	Regeneration of bovine pancreatic ribonuclease A: identification of two nativelike three-disulfide intermediates involved in separate pathways. <i>Biochemistry</i> , 1998 , 37, 3760-6	3.2	96
278	Coupling of conformational folding and disulfide-bond reactions in oxidative folding of proteins. <i>Biochemistry</i> , 2001 , 40, 9059-64	3.2	95
277	Model for the conformational analysis of hydrated peptides. Effect of hydration on the conformational stability of the terminally blocked residues of the 20 naturally occurring amino acids. <i>Biopolymers</i> , 1979 , 18, 1565-1610	2.2	95
276	Folding and unfolding kinetics of the proline-to-alanine mutants of bovine pancreatic ribonuclease A. <i>Biochemistry</i> , 1996 , 35, 1548-59	3.2	94

(2010-1995)

275	Mechanism of reductive protein unfolding. <i>Nature Structural and Molecular Biology</i> , 1995 , 2, 489-94	17.6	93
274	Role of non-native aromatic and hydrophobic interactions in the folding of hen egg white lysozyme. <i>Biochemistry</i> , 1996 , 35, 13797-807	3.2	93
273	A second right-handed helical structure with the parameters of the Pauling-Corey alpha-helix. <i>Nature</i> , 1967 , 214, 363-5	50.4	92
272	Prodock: Software package for protein modeling and docking. <i>Journal of Computational Chemistry</i> , 1999 , 20, 412-427	3.5	91
271	Formation of local structures in protein folding. Accounts of Chemical Research, 1989, 22, 70-76	24.3	90
270	Distributions of intramolecular distances in the reduced and denatured states of bovine pancreatic ribonuclease A. Folding initiation structures in the C-terminal portions of the reduced protein. <i>Biochemistry</i> , 2001 , 40, 105-18	3.2	89
269	Molecular simulation study of cooperativity in hydrophobic association. <i>Protein Science</i> , 2000 , 9, 1235-4	· 5 6.3	87
268	Preferred conformation of the benzyloxycarbonyl-amino group in peptides. <i>International Journal of Peptide and Protein Research</i> , 1983 , 21, 163-81		86
267	Relation between free energy landscapes of proteins and dynamics. <i>Journal of Chemical Theory and Computation</i> , 2010 , 6, 583-595	6.4	85
266	Calculation of protein conformation by global optimization of a potential energy function. <i>Proteins: Structure, Function and Bioinformatics</i> , 1999 , 37, 204-208	4.2	82
265	Nonrandom distribution of the one-disulfide intermediates in the regeneration of ribonuclease A. <i>Biochemistry</i> , 1996 , 35, 6406-17	3.2	82
264	Exact analytical loop closure in proteins using polynomial equations. <i>Journal of Computational Chemistry</i> , 1999 , 20, 819-844	3.5	81
263	Regeneration of bovine pancreatic ribonuclease A: detailed kinetic analysis of two independent folding pathways. <i>Biochemistry</i> , 1998 , 37, 3767-76	3.2	80
262	Investigation of protein folding by coarse-grained molecular dynamics with the UNRES force field. Journal of Physical Chemistry A, 2010 , 114, 4471-85	2.8	79
261	Application of Multiplexed Replica Exchange Molecular Dynamics to the UNRES Force Field: Tests with alpha and alpha+beta Proteins. <i>Journal of Chemical Theory and Computation</i> , 2009 , 5, 627-640	6.4	78
2 60	Determination of net atomic charges using a modified partial equalization of orbital electronegativity method. 2. Application to ionic and aromatic molecules as models for polypeptides. <i>The Journal of Physical Chemistry</i> , 1990 , 94, 4740-4746		78
259	Recent progress in the theoretical treatment of protein folding. <i>Biopolymers</i> , 1983 , 22, 1-14	2.2	77
258	Mechanism of fiber assembly: treatment of Alpeptide aggregation with a coarse-grained united-residue force field. <i>Journal of Molecular Biology</i> , 2010 , 404, 537-52	6.5	74

257	Optimization of the UNRES Force Field by Hierarchical Design of the Potential-Energy Landscape. 3. Use of Many Proteins in Optimization. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 16950-16959	3.4	70
256	Conformational space annealing by parallel computations: Extensive conformational search of Met-enkephalin and of the 20-residue membrane-bound portion of melittin. <i>International Journal of Quantum Chemistry</i> , 1999 , 75, 255-265	2.1	69
255	Optical activity of single-stranded polydeoxyadenylic and polyriboadenylic acids; dependence of adenine chromophore cotton effects on polymer conformation. <i>Biopolymers</i> , 1969 , 7, 395-409	2.2	69
254	Theory of hydrophobic interactions. <i>Journal of Biomolecular Structure and Dynamics</i> , 1998 , 16, 447-60	3.6	68
253	Conformational analysis of the 20-residue membrane-bound portion of melittin by conformational space annealing. <i>Biopolymers</i> , 1998 , 46, 103-16	2.2	66
252	The thrombin-fibrinogen interaction. <i>Biophysical Chemistry</i> , 2004 , 112, 117-30	3.5	66
251	The nature of the initial step in the conformational folding of disulphide-intact ribonuclease A. <i>Nature Structural and Molecular Biology</i> , 1995 , 2, 495-503	17.6	65
250	Optimization of the UNRES Force Field by Hierarchical Design of the Potential-Energy Landscape. 2. Off-Lattice Tests of the Method with Single Proteins. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 16934-	1 69 49	64
249	Regeneration of bovine pancreatic ribonuclease A. 2. Kinetics of regeneration. <i>Biochemistry</i> , 1993 , 32, 2680-9	3.2	64
248	Improved genetic algorithm for the protein folding problem by use of a Cartesian combination operator. <i>Protein Science</i> , 1996 , 5, 1800-15	6.3	63
247	Conformations of poly-L-valine in solution. <i>Biopolymers</i> , 1968 , 6, 1551-71	2.2	63
246	An empirical method to calculate average molecular polarizabilities from the dependence of effective atomic polarizabilities on net atomic charge. <i>Journal of the American Chemical Society</i> , 1993 , 115, 2005-2014	16.4	62
245	Protein structure prediction using a combination of sequence homology and global energy minimization I. Global energy minimization of surface loops. <i>Journal of Computational Chemistry</i> , 1990 , 11, 121-151	3.5	62
244	Exploring the parameter space of the coarse-grained UNRES force field by random search: selecting a transferable medium-resolution force field. <i>Journal of Computational Chemistry</i> , 2009 , 30, 2127-35	3.5	61
243	Nature of the unfolded state of ribonuclease A: effect of cis-trans X-Pro peptide bond isomerization. <i>Biochemistry</i> , 1996 , 35, 11719-33	3.2	59
242	Calculation of protein conformation by the build-up procedure. Application to bovine pancreatic trypsin inhibitor using limited simulated nuclear magnetic resonance data. <i>Journal of Biomolecular Structure and Dynamics</i> , 1988 , 5, 705-55	3.6	59
241	Analysis of the structure of ribonuclease A in native and partially denatured states by time-resolved noradiative dynamic excitation energy transfer between site-specific extrinsic probes. <i>Biochemistry</i> , 1995 , 34, 15965-78	3.2	58
240	Regeneration of bovine pancreatic ribonuclease A. 3. Dependence on the nature of the redox reagent. <i>Biochemistry</i> , 1993 , 32, 2690-7	3.2	57

239	Influence of flexibility on the energy contours of dipeptide maps. <i>Biopolymers</i> , 1966 , 4, 709-12	2.2	57
238	Structure of a hydrophobically collapsed intermediate on the conformational folding pathway of ribonuclease A probed by hydrogen-deuterium exchange. <i>Biochemistry</i> , 1996 , 35, 11734-46	3.2	56
237	Empirical solvation models in the context of conformational energy searches: application to bovine pancreatic trypsin inhibitor. <i>Proteins: Structure, Function and Bioinformatics</i> , 1992 , 14, 110-9	4.2	56
236	Lessons from application of the UNRES force field to predictions of structures of CASP10 targets. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 14936-41	11.5	54
235	On the multiple-minima problem in the conformational analysis of polypeptides. I. Backbone degrees of freedom for a perturbed alpha-helix. <i>Biopolymers</i> , 1987 , 26 Suppl, S33-58	2.2	54
234	Conversion from a virtual-bond chain to a complete polypeptide backbone chain. <i>Biopolymers</i> , 1984 , 23, 1207-24	2.2	54
233	Molecular Theory of the HelixCoil Transition in Polyamino Acids. III. Evaluation and Analysis of s and Ifor Polyglycine and Poly-l-alanine in Water. <i>Journal of Chemical Physics</i> , 1971 , 54, 4489-4503	3.9	54
232	Pattern recognition in the prediction of protein structure. I. Tripeptide conformational probabilities calculated from the amino acid sequence. <i>Journal of Computational Chemistry</i> , 1989 , 10, 770-797	3.5	53
231	Conformational constraints of amino acid side chains in alpha-helices. <i>Biopolymers</i> , 1987 , 26, 1273-86	2.2	53
230	Conformational energy calculations of enzyme-substrate complexes of lysozyme. I. Energy minimization of monosaccharide and oligosaccharide inhibitors and substrates of lysozyme. <i>Biopolymers</i> , 1976 , 15, 2485-521	2.2	53
229	Molecular theory of the helix-coli transition in polyamino acids. II. Numerical evaluation of s and sigma for polyglycine and poly-L-alaine in the absence (for s and sigma) and presence (for sigma) of solvent. <i>Journal of Chemical Physics</i> , 1970 , 52, 2060-79	3.9	53
228	Effect of hydrophobic bonding on the stability of poly-L-alanine helices in water. <i>Biopolymers</i> , 1963 , 1, 419-429	2.2	52
227	Helix-coil transitions re-visited. <i>Biophysical Chemistry</i> , 2002 , 101-102, 255-65	3.5	51
226	Regeneration of three-disulfide mutants of bovine pancreatic ribonuclease A missing the 65-72 disulfide bond: characterization of a minor folding pathway of ribonuclease A and kinetic roles of Cys65 and Cys72. <i>Biochemistry</i> , 1998 , 37, 4490-501	3.2	51
225	Statistical thermodynamics of protein folding: Comparison of a mean-field theory with Monte Carlo simulations. <i>Journal of Chemical Physics</i> , 1995 , 102, 1334-1348	3.9	51
224	Kinetics of the Helix-coil transition in polyamino acids. <i>Journal of Chemical Physics</i> , 1966 , 45, 2071-90	3.9	51
223	How main-chains of proteins explore the free-energy landscape in native states. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 19708-13	11.5	50
222	Distribution of disulfide bonds in the two-disulfide intermediates in the regeneration of bovine pancreatic ribonuclease A: further insights into the folding process. <i>Biochemistry</i> , 1999 , 38, 7284-93	3.2	50

221	Variable step molecular dynamics: An exploratory technique for peptides with fixed geometry. Journal of Computational Chemistry, 1990 , 11, 468-486	3.5	50	
220	Helix-coil transition theory including long-range electrostatic interactions: application to globular proteins. <i>Biopolymers</i> , 1987 , 26, 351-71	2.2	50	
219	Regeneration of bovine pancreatic ribonuclease A. 4. Temperature dependence of the regeneration rate. <i>Biochemistry</i> , 1993 , 32, 2698-703	3.2	49	
218	Structural characterization of a three-disulfide intermediate of ribonuclease A involved in both the folding and unfolding pathways. <i>Biochemistry</i> , 1994 , 33, 10437-49	3.2	47	
217	Standard-geometry chains fitted to X-ray derived structures: Validation of the rigid-geometry approximation. I. Chain closure through a limited search of [bop]conformations. <i>Journal of Computational Chemistry</i> , 1991 , 12, 505-526	3.5	46	
216	Prediction of the native conformation of a polypeptide by a statistical-mechanical procedure. III. Probable and average conformations of enkephalin. <i>Biopolymers</i> , 1987 , 26, 1125-62	2.2	46	
215	Statistical mechanics of noncovalent bonds in polyamino acids. IX. The two-state theory of protein denaturation. <i>Biopolymers</i> , 1965 , 3, 401-419	2.2	46	
214	Effect of side chains on the conformational energy and rotational strength of the n-pi transition for some alpha-helical poly-alpha-amino acids. <i>Biopolymers</i> , 1968 , 6, 1531-50	2.2	46	
213	How adequate are one- and two-dimensional free energy landscapes for protein folding dynamics?. <i>Physical Review Letters</i> , 2009 , 102, 238102	7.4	45	
212	Circular dichroism evidence for the presence of burst-phase intermediates on the conformational folding pathway of ribonuclease A. <i>Biochemistry</i> , 1996 , 35, 10125-33	3.2	45	
211	Communications to the editor: Stable conformations of dipeptides. <i>Biopolymers</i> , 1973 , 12, 2177-83	2.2	45	
210	New developments of the electrostatically driven Monte Carlo method: test on the membrane-bound portion of melittin. <i>Biopolymers</i> , 1998 , 46, 117-26	2.2	44	
209	Kinetic folding pathway of a three-disulfide mutant of bovine pancreatic ribonuclease A missing the [40-95] disulfide bond. <i>Biochemistry</i> , 1998 , 37, 7561-71	3.2	44	
208	Two new structured intermediates in the oxidative folding of RNase A. <i>FEBS Letters</i> , 1999 , 460, 477-9	3.8	44	
207	Influence of interatomic interactions on the structure and stability of polypeptides and proteins. <i>Biopolymers</i> , 1981 , 20, 1877-1899	2.2	44	
206	Effect of side-chain hydrophobic bonding on the stability of homopolyamino acid alpha-helices: conformational studies of poly-l-leucine in water. <i>Biopolymers</i> , 1970 , 9, 749-64	2.2	44	
205	Intramolecular steric effects and hydrogen bonding in regular conformations of polyamino acids. <i>Biopolymers</i> , 1966 , 4, 887-904	2.2	44	
204	Molecular dynamics with the United-residue force field: ab initio folding simulations of multichain proteins. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 293-309	3.4	43	

203	Macromolecular conformational dynamics in torsional angle space. <i>Journal of Chemical Physics</i> , 1998 , 108, 271-286	3.9	43
202	Kinetic and thermodynamic studies of the folding/unfolding of a tryptophan-containing mutant of ribonuclease A. <i>Biochemistry</i> , 1996 , 35, 12978-92	3.2	42
201	An efficient, differentiable hydration potential for peptides and proteins. <i>Journal of Computational Chemistry</i> , 1996 , 17, 1549-1558	3.5	42
200	Optimizing Potential Functions for Protein Folding. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 14540-	-14548	3 41
199	Variable-target-function and build-up procedures for the calculation of protein conformation. Application to bovine pancreatic trypsin inhibitor using limited simulated nuclear magnetic resonance data. <i>Journal of Biomolecular Structure and Dynamics</i> , 1988 , 5, 757-84	3.6	41
198	Influence of local interactions on protein structure. II. Conformational energy studies of N-acetyl-N?-methylamides of Ala-X and X-Ala dipeptides. <i>Biopolymers</i> , 1978 , 17, 1849-1869	2.2	41
197	Diffusion Equation and Distance Scaling Methods of Global Optimization: Applications to Crystal Structure Prediction. <i>Journal of Physical Chemistry A</i> , 1998 , 102, 2904-2918	2.8	40
196	The effect of the L-azetidine-2-carboxylic acid residue on protein conformation. I. Conformations of the residue and of dipeptides. <i>Biopolymers</i> , 1990 , 30, 951-9	2.2	40
195	Matrix formulation of the transition from a statistical coil to an intramolecular antiparallel beta sheet. <i>Biopolymers</i> , 1984 , 23, 1701-24	2.2	40
194	Acceleration of convergence in Monte Carlo simulations of aqueous solutions using the metropolis algorithm. Hydrophobic hydration of methane. <i>Journal of Computational Chemistry</i> , 1982 , 3, 525-547	3.5	40
193	THE EFFECT OF SOLUTES ON THE STRUCTURE OF WATER AND ITS IMPLICATIONS FOR PROTEIN STRUCTURE*. <i>Annals of the New York Academy of Sciences</i> , 2006 , 125, 253-276	6.5	39
192	Effect of sequence-specific interactions on the stability of helical conformations in polypeptides. <i>Biopolymers</i> , 1988 , 27, 41-58	2.2	39
191	Brownian dynamics simulations of protein folding. <i>Journal of Chemical Physics</i> , 1998 , 108, 287-300	3.9	37
190	Pattern recognition in the prediction of protein structure. II. Chain conformation from a probability-directed search procedure. <i>Journal of Computational Chemistry</i> , 1989 , 10, 798-816	3.5	37
189	Crystal structures of two mutants that have implications for the folding of bovine pancreatic ribonuclease A. <i>Protein Science</i> , 1998 , 7, 1255-8	6.3	36
188	Predicting 13Calpha chemical shifts for validation of protein structures. <i>Journal of Biomolecular NMR</i> , 2007 , 38, 221-35	3	36
187	Can cooperativity in hydrophobic association be reproduced correctly by implicit solvation models?*. <i>International Journal of Quantum Chemistry</i> , 2002 , 88, 41-55	2.1	36
186	Anti-cooperative interactions in single-strand oligomers of deoxyriboadenylic acid. <i>Biopolymers</i> , 1967 , 5, 403-22	2.2	36

185	Performance of protein-structure predictions with the physics-based UNRES force field in CASP11. <i>Bioinformatics</i> , 2016 , 32, 3270-3278	7.2	36
184	Hierarchical energy-based approach to protein-structure prediction: Blind-test evaluation with CASP3 targets. <i>International Journal of Quantum Chemistry</i> , 2000 , 77, 90-117	2.1	35
183	Ion Pair Interactions in Aqueous Solution: Self-Consistent Reaction Field (SCRF) Calculations with Some Explicit Water Molecules. <i>Journal of Physical Chemistry A</i> , 2000 , 104, 6505-6509	2.8	35
182	Influence of local interactions on protein structure. III. Conformational energy studies of N-acety-N?-methylamides of Gly-X and X-Gly dipeptides. <i>Biopolymers</i> , 1978 , 17, 1871-1884	2.2	35
181	Physics-based potentials for the coupling between backbone- and side-chain-local conformational states in the UNited RESidue (UNRES) force field for protein simulations. <i>Journal of Chemical Theory and Computation</i> , 2015 , 11, 817-31	6.4	34
180	Conformational unfolding studies of three-disulfide mutants of bovine pancreatic ribonuclease A and the coupling of proline isomerization to disulfide redox reactions. <i>Biochemistry</i> , 1999 , 38, 2805-15	3.2	34
179	Maximum Likelihood Calibration of the UNRES Force Field for Simulation of Protein Structure and Dynamics. <i>Journal of Chemical Information and Modeling</i> , 2017 , 57, 2364-2377	6.1	33
178	Conformational energy calculations of enzyme-substrate interactions. II. Computation of the binding energy for substrates in the active site of -chymotrypsin. <i>International Journal of Peptide and Protein Research</i> , 1972 , 4, 201-19		32
177	Helix-random coil transformations in deuterated macromolecules. <i>Annals of the New York Academy of Sciences</i> , 1960 , 84, 608-16	6.5	32
176	Prediction of the native conformation of a polypeptide by a statistical-mechanical procedure. II. Average backbone structure of enkephalin. <i>Biopolymers</i> , 1986 , 25, 1547-63	2.2	32
175	Spatial geometric arrangements of disulfide-crosslinked loops in proteins. <i>Journal of Computational Chemistry</i> , 1986 , 7, 67-88	3.5	32
174	CONFORMATIONALSTUDY OF [LEU5]-ENKEPHALIN BY LASER RAMAN SPECTROSCOPY. International Journal of Peptide and Protein Research, 2009, 16, 173-182		31
173	Pattern recognition in the prediction of protein structure. III. An importance-sampling minimization procedure. <i>Journal of Computational Chemistry</i> , 1989 , 10, 817-831	3.5	31
172	On the multiple-minima problem in the conformational analysis of polypeptides. V. Application of the self-consistent electrostatic field and the electrostatically driven Monte Carlo methods to bovine pancreatic trypsin inhibitor. <i>Proteins: Structure, Function and Bioinformatics</i> , 1991 , 10, 188-98	4.2	30
171	Statistical mechanics of noncovalent bonds in polyamino acids. I. Hydrogen bonding of solutes in water, and the binding of water to polypeptides. <i>Biopolymers</i> , 1965 , 3, 275-282	2.2	30
170	Comparison of theories of the helix-coil transition in polypeptides. <i>Journal of Chemical Physics</i> , 1965 , 43, 2071-4	3.9	30
169	Improvement of the treatment of loop structures in the UNRES force field by inclusion of coupling between backbone- and side-chain-local conformational states. <i>Journal of Chemical Theory and Computation</i> , 2013 , 9,	6.4	29
168	Molecular modeling of the binding modes of the iron-sulfur protein to the Jac1 co-chaperone from Saccharomyces cerevisiae by all-atom and coarse-grained approaches. <i>Proteins: Structure, Function and Bioinformatics</i> , 2015 , 83, 1414-26	4.2	29

167	Dissimilarity in the reductive unfolding pathways of two ribonuclease homologues. <i>Journal of Molecular Biology</i> , 2004 , 338, 795-809	6.5	29
166	Determination of net atomic charges using a modified partial equalization of orbital electronegativity method. III. Application to halogenated and aromatic molecules. <i>Journal of Computational Chemistry</i> , 1993 , 14, 1482-1490	3.5	29
165	Anomalous diffusion and dynamical correlation between the side chains and the main chain of proteins in their native state. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 10346-51	11.5	28
164	Solution conformations of oligomers of Haminoisobutyric acid [®] International Journal of Peptide and Protein Research, 2009 , 20, 468-480		28
163	Kinetic studies of the regeneration of recombinant hirudin variant 1 with oxidized and reduced dithiothreitol. <i>Biochemistry</i> , 1997 , 36, 2154-65	3.2	28
162	Exact solutions for chemical bond orientations from residual dipolar couplings. <i>Journal of Biomolecular NMR</i> , 2002 , 22, 137-51	3	28
161	Theory of Two-State Cooperative Folding of Proteins. Accounts of Chemical Research, 1998, 31, 433-440	24.3	28
160	A Simple Functional Representation of Angular-Dependent Hydrogen-Bonded Systems. 1. Amide, Carboxylic Acid, and Amide-Carboxylic Acid Pairs. <i>The Journal of Physical Chemistry</i> , 1995 , 99, 3478-3486		28
159	Statistical mechanics of noncovalent bonds in polyamino acids. II. Combinatorial formulation for short chains, including hydrophobic bonding in random coil. <i>Biopolymers</i> , 1965 , 3, 283-304	2.2	28
158	DNA Duplex Formation with a Coarse-Grained Model. <i>Journal of Chemical Theory and Computation</i> , 2014 , 10, 5020-5035	6.4	27
157	Folding kinetics of WW domains with the united residue force field for bridging microscopic motions and experimental measurements. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 18243-8	11.5	27
156	Nonexponential decay of internal rotational correlation functions of native proteins and self-similar structural fluctuations. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 19844-9	11.5	27
155	Monte Carlo simulation of the hard-sphere fluid with quantum correction and estimate of its free energy. <i>Journal of Chemical Physics</i> , 1988 , 88, 3923-3933	3.9	27
154	Resolution enhancement in spectroscopy by maximum entropy fourier self-deconvolution, with applications to Raman spectra of peptides and proteins. <i>Journal of Raman Spectroscopy</i> , 1985 , 16, 337-3	49 ³	27
153	Influence of lysine content and pH on the stability of alanine-based copolypeptides. <i>Biopolymers</i> , 2001 , 58, 235-46	2.2	26
152	Molecular theory of the helix-coil transition in polyamino acids. V. Explanation of the different conformational behavior of valine, isoleucine, and leucine in aqueous solution. <i>Biopolymers</i> , 1984 , 23, 1961-77	2.2	26
151	Influence of hydration on the conformational stability and formation of bends in terminally blocked dipeptides. <i>Biopolymers</i> , 1979 , 18, 1611-1634	2.2	26
150	A localized specific interaction alters the unfolding pathways of structural homologues. <i>Journal of the American Chemical Society</i> , 2006 , 128, 1204-13	16.4	25

149	Determination of Nonbonded Potential Parameters for Peptides. <i>The Journal of Physical Chemistry</i> , 1995 , 99, 13019-13027		25
148	Standard-geometry chains fitted to X-ray derived structures: Validation of the rigid-geometry approximation. II. Systematic searches for short loops in proteins: Applications to bovine pancreatic ribonuclease A and human lysozyme. <i>Journal of Computational Chemistry</i> , 1992 , 13, 329-350	3.5	25
147	Some approaches to the multiple-minima problem in the calculation of polypeptide and protein structures. <i>International Journal of Quantum Chemistry</i> , 1992 , 42, 1529-1536	2.1	24
146	Derivation of a New Force Field for Crystal-Structure Prediction Using Global Optimization: Nonbonded Potential Parameters for Hydrocarbons and Alcohols. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 7143-7154	3.4	23
145	Theoretical studies of protein conformation by means of energy computations. <i>FASEB Journal</i> , 1990 , 4, 3189-97	0.9	23
144	Chemical basis of thrombin interactions with fibrinogen. <i>Annals of the New York Academy of Sciences</i> , 1986 , 485, 124-33	6.5	23
143	Conformational preferences of amino acid side chains in collagen. <i>Biopolymers</i> , 1982 , 21, 1535-1555	2.2	23
142	Elucidating Important Sites and the Mechanism for Amyloid Fibril Formation by Coarse-Grained Molecular Dynamics. <i>ACS Chemical Neuroscience</i> , 2017 , 8, 201-209	5.7	22
141	B-spline method for energy minimization in grid-based molecular mechanics calculations. <i>Journal of Computational Chemistry</i> , 1998 , 19, 71-85	3.5	22
140	Folding of a disulfide-bonded protein species with free thiol(s): competition between conformational folding and disulfide reshuffling in an intermediate of bovine pancreatic ribonuclease A. <i>Biochemistry</i> , 2001 , 40, 15002-8	3.2	22
139	Stability of polypeptide conformational states. II. Folding of a polypeptide chain by the scanning simulation method, and calculation of the free energy of the statistical coil. <i>Biopolymers</i> , 1988 , 27, 1189)- 2 :04	22
138	Influence of local interactions on protein structure. IV. Conformational energy studies of N-acetyl-N?-mehylamides of Ser-X- and X-Ser dipeptides. <i>Biopolymers</i> , 1978 , 17, 1885-1890	2.2	22
137	The Lifson-Allegra theories of the helixboil transition for random copolymers: Comparison with exact results and extension. <i>Biopolymers</i> , 1969 , 7, 887-908	2.2	22
136	Neighborfleighbor interactions in single-strand polynucleotides: Optical rotatory dispersion studies of the ribonucleotide ApApCp. <i>Biopolymers</i> , 1966 , 4, 33-41	2.2	22
135	Lysosomal enzyme tripeptidyl peptidase 1 destabilizes fibrillar Alby multiple endoproteolytic cleavages within the Esheet domain. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 1493-1498	11.5	21
134	Evolution of physics-based methodology for exploring the conformational energy landscape of proteins. <i>Journal of Computational Chemistry</i> , 2002 , 23, 28-34	3.5	21
133	Prediction of protein structure using a knowledge-based off-lattice united-residue force field and global optimization methods. <i>Theoretical Chemistry Accounts</i> , 1999 , 101, 16-20	1.9	21
132	The role of the insertion loop around tryptophan 148 in tthe activity of thrombin. <i>Biochemistry</i> , 1996 , 35, 4427-33	3.2	21

131	Energetics of the structure and chain tilting of antiparallel beta-barrels in proteins. <i>Proteins:</i> Structure, Function and Bioinformatics, 1990 , 8, 14-22	4.2	21
130	The effect of the L-azetidine-2-carboxylic acid residue on protein conformation. III. Collagen-like poly(tripeptide)s. <i>Biopolymers</i> , 1990 , 30, 967-74	2.2	21
129	Energetics of multihelix interactions in protein folding: application to myoglobin. <i>Biopolymers</i> , 1985 , 24, 1271-91	2.2	21
128	Calculation of protein conformation by global optimization of a potential energy function. <i>Proteins: Structure, Function and Bioinformatics</i> , 1999 , Suppl 3, 204-8	4.2	21
127	New Insights into Protein (Un)Folding Dynamics. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 1082-6	6.4	20
126	Thrombin and its interaction with fibrinogen. <i>Annals of the New York Academy of Sciences</i> , 1958 , 75, 189	-6 <i>4</i> 5	20
125	Flexible docking simulations: Scaled collective variable Monte Carlo minimization approach using Bezier splines, and comparison with a standard Monte Carlo algorithm. <i>Journal of Computational Chemistry</i> , 1999 , 20, 244-252	3.5	20
124	The effect of the l-azetidine-2-carboxylic acid residue on protein conformation. IV. Local substitutions in the collagen triple helix. <i>Biopolymers</i> , 1994 , 34, 51-60	2.2	20
123	Coexistence of phases in a protein heterodimer. <i>Journal of Chemical Physics</i> , 2012 , 137, 035101	3.9	19
122	CheShift-2: graphic validation of protein structures. <i>Bioinformatics</i> , 2012 , 28, 1538-9	7.2	19
121	Characterization of foldable protein models: Thermodynamics, folding kinetics and force field. Journal of Chemical Physics, 1997 , 107, 8089-8102	3.9	19
120	New general approach for determining the solution structure of a ligand bound weakly to a receptor: structure of a fibrinogen Aalpha-like peptide bound to thrombin (S195A) obtained using NOE distance constraints and an ECEPP/3 flexible docking program. <i>Proteins: Structure, Function</i>	4.2	19
119	Chemical-Shift Data for Water and Aqueous Solutions. <i>Journal of Chemical Physics</i> , 1966 , 45, 3296-3298	3.9	19
118	Extension of UNRES force field to treat polypeptide chains with D-amino-acid residues. <i>Journal of Chemical Theory and Computation</i> , 2012 , 8, 4746-4757	6.4	18
117	Comparison of two approaches to potential of mean force calculations of hydrophobic association: particle insertion and weighted histogram analysis methods. <i>Molecular Physics</i> , 2005 , 103, 3153-3167	1.7	18
116	Comment on Anti-cooperativity in hydrophobic interactions: A simulation study of spatial dependence of three-body effects and beyond[J. Chem. Phys. 115, 1414 (2001)]. <i>Journal of Chemical Physics</i> , 2002 , 116, 2665-2667	3.9	18
115	Determination of net atomic charges using a modified partial equalization of orbital electronegativity method. IV. Application to hypervalent sulfur- and phosphorus-containing molecules. <i>Journal of Computational Chemistry</i> , 1995 , 16, 1011-1026	3.5	18
114	Statistical mechanics of noncovalent bonds in polyamino acids. IV. Matrix treatment of hydrophobic bonds in the random coil and of the helixBoil transition for chains of arbitrary length. <i>Biopolymers</i> , 1965 , 3, 315-334	2.2	18

113	Bromination of Hydrocarbons. VI. Photochemical and Thermal Bromination of Toluene. Bond Dissociation Energies. <i>Journal of Chemical Physics</i> , 1953 , 21, 1258-1267	3.9	18
112	From a Highly Disordered to a Metastable State: Uncovering Insights of Esynuclein. <i>ACS Chemical Neuroscience</i> , 2018 , 9, 1051-1065	5.7	17
111	Accounting for a mirror-image conformation as a subtle effect in protein folding. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 8458-63	11.5	17
110	Kinks, loops, and protein folding, with protein A as an example. <i>Journal of Chemical Physics</i> , 2014 , 140, 025101	3.9	17
109	Conformational energy calculations of enzyme-substrate interactions. I. Computation of preferred conformations of some substrates of -chymotrypsin. <i>International Journal of Peptide and Protein Research</i> , 1972 , 4, 187-200		17
108	Derivation of a New Force Field for Crystal-Structure Prediction Using Global Optimization: Nonbonded Potential Parameters for Amines, Imidazoles, Amides, and Carboxylic Acids. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 12181-12196	3.4	17
107	Computer simulation of the entropy of continuum chain models: The two-dimensional freely jointed chain of hard disks. <i>Journal of Chemical Physics</i> , 1986 , 84, 6369-6375	3.9	17
106	Conformational analysis of macromolecules. I. Ethane, propane, n-butane, and n-pentane. <i>Biopolymers</i> , 1966 , 4, 237-238	2.2	17
105	Simple Physics-Based Analytical Formulas for the Potentials of Mean Force of the Interaction of Amino Acid Side Chains in Water. VII. Charged-Hydrophobic/Polar and Polar-Hydrophobic/Polar Side Chains. <i>Journal of Physical Chemistry B</i> , 2017 , 121, 379-390	3.4	16
104	Preventing fibril formation of a protein by selective mutation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 13549-54	11.5	16
103	An analysis and evaluation of the WeFold collaborative for protein structure prediction and its pipelines in CASP11 and CASP12. <i>Scientific Reports</i> , 2018 , 8, 9939	4.9	16
102	Revised Backbone-Virtual-Bond-Angle Potentials to Treat the l- and d-Amino Acid Residues in the Coarse-Grained United Residue (UNRES) Force Field. <i>Journal of Chemical Theory and Computation</i> , 2014 , 10, 2194-2203	6.4	16
101	Optimization of a Nucleic Acids united-RESidue 2-Point model (NARES-2P) with a maximum-likelihood approach. <i>Journal of Chemical Physics</i> , 2015 , 143, 243111	3.9	16
100	Correlation of beta-bend conformations of tetrapeptides with their activities in CD4-receptor binding assays. <i>International Journal of Peptide and Protein Research</i> , 1989 , 34, 325-32		16
99	The electrostatically driven Monte Carlo method: application to conformational analysis of decaglycine. <i>Biopolymers</i> , 1991 , 31, 319-30	2.2	16
98	Role of proline proline interactions in the packing of collagenlike poly(tripeptide) triple helices. <i>Biopolymers</i> , 1984 , 23, 2781-99	2.2	16
97	Statistical mechanics of noncovalent bonds in polyamino acids. III. Interhelical hydrophobic bonds in short chains. <i>Biopolymers</i> , 1965 , 3, 305-313	2.2	16
96	Statistical mechanics of noncovalent bonds in polyamino acids. V. Treatment of long chains by the method of sequence-generating functions: Hydrophobic bonding in random coil, and interactions between helical segments. <i>Biopolymers</i> 1965 , 3, 335-355	2.2	16

(2001-2015)

95	Alternative approach to protein structure prediction based on sequential similarity of physical properties. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 5029-32	11.5	14
94	Effects of mutation, truncation, and temperature on the folding kinetics of a WW domain. <i>Journal of Molecular Biology</i> , 2012 , 420, 350-65	6.5	14
93	Local vs global motions in protein folding. Journal of Chemical Theory and Computation, 2013, 9, 2907-2	298.14	14
92	Regeneration studies of an analog of ribonuclease A missing disulfide bonds 65-72 and 40-95. <i>Biochemistry</i> , 1997 , 36, 13068-76	3.2	14
91	Predicting Three-Dimensional Structures of Oligopeptides. <i>Reviews in Computational Chemistry</i> , 2007 , 73-142		14
90	An Unusual Adduct of Dithiothreitol with a Pair of Cysteine Residues of a Protein as a Stable Folding Intermediate. <i>Journal of the American Chemical Society</i> , 1998 , 120, 2668-2669	16.4	14
89	Comparison of local and global stability of an analogue of a disulfide-folding intermediate with those of the wild-type protein in bovine pancreatic ribonuclease A: identification of specific regions of stable structure along the oxidative folding pathway. <i>Biochemistry</i> , 1999 , 38, 16432-42	3.2	14
88	Free energy of hydration of collagen models and the enthalpy of the transition between the triple-helical coiled-coil and single-stranded conformations. <i>Biopolymers</i> , 1989 , 28, 1573-84	2.2	14
87	Beta-bend conformation of CH3CO-Pro-Pro-Gly-Pro-NHCH3: implications for posttranslational proline hydroxylation in collagen. <i>Biopolymers</i> , 1984 , 23, 1193-206	2.2	14
86	Role of interstrand loops in the formation of intramolecular cross-beta-sheets by homopolyamino acids. <i>Biopolymers</i> , 1985 , 24, 565-79	2.2	14
85	Visualization of the nature of protein folding by a study of a distance constraint approach in two-dimensional models. <i>Biopolymers</i> , 1982 , 21, 611-32	2.2	14
84	Formation of the hydrophobic core of ribonuclease A through sequential coordinated conformational transitions. <i>Biochemistry</i> , 2002 , 41, 14225-31	3.2	13
83	Analyzing the normal mode dynamics of macromolecules by the component synthesis method: Residue clustering and multiple-component approach. <i>Biopolymers</i> , 1994 , 34, 321-335	2.2	13
82	Dependence of the Formation of Tau and AlPeptide Mixed Aggregates on the Secondary Structure of the N-Terminal Region of All Journal of Physical Chemistry B, 2018 , 122, 7049-7056	3.4	13
81	Homolog detection using global sequence properties suggests an alternate view of structural encoding in protein sequences. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 5225-9	11.5	12
80	Amino Acid Residues at Protein Protein Interfaces: Why Is Propensity so Different from Relative Abundance?. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 9929-9932	3.4	12
79	Formation of native structure by intermolecular thiol-disulfide exchange reactions without oxidants in the folding of bovine pancreatic ribonuclease A. <i>FEBS Letters</i> , 2000 , 471, 177-81	3.8	12
78	Effect of mutation of proline 93 on redox unfolding/folding of bovine pancreatic ribonuclease A. <i>Biochemistry</i> , 2001 , 40, 8536-41	3.2	12

77	Determination of Potential Parameters for Amino Acid Zwitterions. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 17670-17677		12
76	A rapid and efficient algorithm for packing polypeptide chains by energy minimization. <i>Journal of Computational Chemistry</i> , 1994 , 15, 1403-1413	3.5	12
75	Free energy and stability of macromolecules studied by the double scanning simulation procedure. Journal of Chemical Physics, 1990 , 92, 1248-1257	3.9	12
74	Search for low-energy conformations of a neurotoxic protein by means of predictive rules, tests for hard-sphere overlaps, and energy minimization. <i>International Journal of Peptide and Protein Research</i> , 1976 , 8, 237-52		11
73	Conformational studies of somatostatin and selected analogues by Raman spectroscopy. <i>International Journal of Peptide and Protein Research</i> , 1980 , 15, 355-64		11
72	Acceleration of oxidative folding of bovine pancreatic ribonuclease A by anion-induced stabilization and formation of structured native-like intermediates. <i>FEBS Letters</i> , 2000 , 472, 67-72	3.8	11
71	Computational study of packing a collagen-like molecule: quasi-hexagonal vs "Smith" collagen microfibril model. <i>Biopolymers</i> , 1996 , 40, 595-607	2.2	11
70	Sequence-, structure-, and dynamics-based comparisons of structurally homologous CheY-like proteins. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 15	78 ⁻¹ 58	3 ¹⁰
69	From helix-coil transitions to protein folding. <i>Biopolymers</i> , 2008 , 89, 479-85	2.2	10
68	Solution NMR evidence for a cis Tyr-Ala peptide group in the structure of [Pro93Ala] bovine pancreatic ribonuclease A. <i>Protein Science</i> , 2000 , 9, 421-6	6.3	10
67	Computation of the Structure-Dependent pKa Shifts in a Polypentapeptide of the Poly[fv(IPGVG), fE(IPGEG)] Family. <i>Journal of Physical Chemistry B</i> , 1998 , 102, 3065-3067	3.4	10
66	Contribution of physical chemistry to an understanding of protein structure and function. <i>Protein Science</i> , 1992 , 1, 691-3	6.3	10
65	Spatial geometric arrangements of disulfide-crosslinked loops in nonplanar proteins. <i>Journal of Computational Chemistry</i> , 1989 , 10, 287-294	3.5	10
64	Effect of protein disulfide isomerase on the regeneration of bovine ribonuclease A with dithiothreitol. <i>FEBS Letters</i> , 1999 , 456, 143-5	3.8	9
63	Effect of a Gaussian Distribution on Flow Birefringence. <i>Journal of Chemical Physics</i> , 1951 , 19, 983-984	3.9	9
62	Coupled molecular dynamics and continuum electrostatic method to compute the ionization pKa's of proteins as a function of pH. Test on a large set of proteins. <i>Journal of Biomolecular Structure and Dynamics</i> , 2018 , 36, 561-574	3.6	8
61	A generalized G-SFED continuum solvation free energy calculation model. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, E662-7	11.5	8
60	Spectroscopic study of the conformations of proline-containing oligopeptides in the crystalline state and in solution. <i>International Journal of Peptide and Protein Research</i> , 1981 , 17, 297-315		8

59	An algorithm for packing regular multistrand polypeptide structures by energy minimization. Journal of Computational Chemistry, 1994 , 15, 1414-1428	3.5	8
58	Monte Carlo simulation of the hard-sphere fluid with a high-temperature quantum correction in the region of the fluid phase transition. <i>Journal of Chemical Physics</i> , 1992 , 96, 7005-7009	3.9	8
57	Dynamics of peptides with fixed geometry: Kinetic energy terms and potential energy derivatives as functions of dihedral angles. <i>Journal of Computational Chemistry</i> , 1990 , 11, 487-492	3.5	8
56	Suppression of the statistical coil state during the alpha in equilibrium beta transition in homopolypeptides. <i>Biopolymers</i> , 1984 , 23, 2879-90	2.2	8
55	Molecular dynamics of protein A and a WW domain with a united-residue model including hydrodynamic interaction. <i>Journal of Chemical Physics</i> , 2016 , 144, 184110	3.9	8
54	Entropy Sampling Monte Carlo for Polypeptides and Proteins. Advances in Chemical Physics,243-272		8
53	Dynamics of Disulfide-Bond Disruption and Formation in the Thermal Unfolding of Ribonuclease A. <i>Journal of Chemical Theory and Computation</i> , 2017 , 13, 5721-5730	6.4	7
52	My 65 years in protein chemistry. <i>Quarterly Reviews of Biophysics</i> , 2015 , 48, 117-77	7	7
51	Global informatics and physical property selection in protein sequences. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 1808-10	11.5	7
50	Respice, adspice, and prospice. <i>Annual Review of Biophysics</i> , 2011 , 40, 1-39	21.1	7
40			
49	Conformational energy analysis of melanostatin. <i>International Journal of Peptide and Protein Research</i> , 1982 , 19, 143-52		7
48		3.5	7
	Research, 1982, 19, 143-52 An assessment of the accuracy of the RRIGS hydration potential: Comparison to solutions of the	3.5	
48	Research, 1982, 19, 143-52 An assessment of the accuracy of the RRIGS hydration potential: Comparison to solutions of the PoissonBoltzmann equation. <i>Journal of Computational Chemistry</i> , 1997, 18, 1072-1078 Reply to Comment on Crystal Structure Prediction by Global Optimization as a Tool for Evaluating Potentials: Role of the Dipole Moment Correction Term in Successful Predictions' By B. P. van Eijck	3.4	7
48	An assessment of the accuracy of the RRIGS hydration potential: Comparison to solutions of the PoissonBoltzmann equation. <i>Journal of Computational Chemistry</i> , 1997 , 18, 1072-1078 Reply to Comment on Crystal Structure Prediction by Global Optimization as a Tool for Evaluating Potentials: Role of the Dipole Moment Correction Term in Successful Predictions' By B. P. van Eijck and J. Kroon. <i>Journal of Physical Chemistry B</i> , 2000 , 104, 8090-8092	3.4	7
48 47 46	An assessment of the accuracy of the RRIGS hydration potential: Comparison to solutions of the PoissonBoltzmann equation. <i>Journal of Computational Chemistry</i> , 1997 , 18, 1072-1078 Reply to Comment on Crystal Structure Prediction by Global Optimization as a Tool for Evaluating Potentials: Role of the Dipole Moment Correction Term in Successful Predictions' By B. P. van Eijck and J. Kroon. <i>Journal of Physical Chemistry B</i> , 2000 , 104, 8090-8092 Monte Carlo recursion study of cluster formation from vapor. <i>Journal of Chemical Physics</i> , 1990 , 92, 54. Correlation between computed conformational properties of cytochrome c peptides and their	3·4 99;550	7 7 5 ₇
48 47 46 45	An assessment of the accuracy of the RRIGS hydration potential: Comparison to solutions of the PoissonBoltzmann equation. <i>Journal of Computational Chemistry</i> , 1997, 18, 1072-1078 Reply to Comment on Crystal Structure Prediction by Global Optimization as a Tool for Evaluating Potentials: Role of the Dipole Moment Correction Term in Successful Predictions' Dy B. P. van Eijck and J. Kroon. <i>Journal of Physical Chemistry B</i> , 2000, 104, 8090-8092 Monte Carlo recursion study of cluster formation from vapor. <i>Journal of Chemical Physics</i> , 1990, 92, 54 Correlation between computed conformational properties of cytochrome c peptides and their antigenicity in a T-lymphocyte proliferation assay. <i>Biopolymers</i> , 1987, 26, 373-86 A new protein nucleic-acid coarse-grained force field based on the UNRES and NARES-2P force	3·4 99 5 550 2.2	7 7 5 ₇ 7

41	Use of sequence-specific tri-block copolymers to determine the helix-forming tendencies of amino acids. <i>Biopolymers</i> , 1998 , 39, 531-536	2.2	6
40	Low-energy conformations of two lysine-containing tetrapeptides of collagen: implications for posttranslational lysine hydroxylation. <i>Biopolymers</i> , 1987 , 26, 1781-8	2.2	6
39	Role of Hydrophobic Bonding in Protein Structure. <i>Zeitschrift Fur Elektrotechnik Und Elektrochemie</i> , 1964 , 68, 838-839		6
38	Statistical mechanics of noncovalent bonds in polyamino acids. VII. Fluorescence as an indication of conformation. <i>Biopolymers</i> , 1965 , 3, 369-377	2.2	6
37	Investigation of Phosphorylation-Induced Folding of an Intrinsically Disordered Protein by Coarse-Grained Molecular Dynamics. <i>Journal of Chemical Theory and Computation</i> , 2021 , 17, 3203-3220	6.4	6
36	Statistical Model To Decipher Protein Folding/Unfolding at a Local Scale. <i>Journal of Physical Chemistry B</i> , 2018 , 122, 3540-3549	3.4	5
35	Thrombin specificity: further evidence for the importance of the beta-insertion loop and Trp96. Implications of the hydrophobic interaction between Trp96 and Pro60B Pro60C for the activity of thrombin. <i>The Protein Journal</i> , 1998 , 17, 197-208		5
34	Simple global minimization algorithm for one-variable rational functions. <i>Journal of Global Optimization</i> , 1995 , 6, 293-311	1.5	5
33	Vibrational quantum correction for the Lennard-Jones fluid: A formalism of effective intermolecular potentials depending on mass and temperature. <i>Journal of Chemical Physics</i> , 1990 , 92, 3748-3755	3.9	5
32	Calorimetric measurement of enthalpy change in the isothermal helix-coil transition of poly(L-ornithine) in aqueous solution. <i>Biopolymers</i> , 1976 , 15, 1795-1813	2.2	5
31	Theoretical Studies of Interactions between O-Phosphorylated and Standard Amino-Acid Side-Chain Models in Water. <i>Journal of Physical Chemistry B</i> , 2015 , 119, 8526-34	3.4	4
30	Curvature and Torsion of Protein Main Chain as Local Order Parameters of Protein Unfolding. Journal of Physical Chemistry B, 2020 , 124, 4391-4398	3.4	4
29	Eliminating a Protein Folding Intermediate by Tuning a Local Hydrophobic Contact. <i>Journal of Physical Chemistry B</i> , 2017 , 121, 3276-3284	3.4	4
28	Statistical mechanics of noncovalent bonds in polyamino acids. VI. A simple model for side-chain hydrogen bonds between helices. <i>Biopolymers</i> , 1965 , 3, 357-367	2.2	4
27	New Insights into Folding, Misfolding, and Nonfolding Dynamics of a WW Domain. <i>Journal of Physical Chemistry B</i> , 2020 , 124, 3855-3872	3.4	4
26	Limiting Values of the one-bond C-H Spin-Spin Coupling Constants of the Imidazole Ring of Histidine at High-pH. <i>Journal of Molecular Structure</i> , 2017 , 1134, 576-581	3.4	3
25	Towards Temperature Dependent Coarse-grained Potential of Side-chain Interactions for Protein Folding Simulations 2010 ,		3
24	Treatment of Hydration in Conformational Energy Calculations on Polypeptides and Proteins. <i>ACS Symposium Series</i> , 1994 , 360-370	0.4	3

(2020-1969)

23	Helix sense of poly-Ep-chlorobenzyl L-glutamate. <i>Biopolymers</i> , 1969 , 7, 805-808	2.2	3
22	Contractility and conformation. <i>Journal of General Physiology</i> , 1967 , 50, Suppl:5-27	3.4	3
21	Detection of methylation, acetylation and glycosylation of protein residues by monitoring (13)C chemical-shift changes: A quantum-chemical study. <i>PeerJ</i> , 2016 , 4, e2253	3.1	3
20	Ribonucleases as Models for Understanding Protein Folding. <i>Nucleic Acids and Molecular Biology</i> , 2011 , 367-397		3
19	Assessing the One-Bond C-H Spin-Spin Coupling Constants in Proteins: Pros and Cons of Different Approaches. <i>Journal of Physical Chemistry B</i> , 2020 , 124, 735-741	3.4	2
18	A comprehensive analysis of the computed tautomer fractions of the imidazole ring of histidines in Loligo vulgaris. <i>Journal of Biomolecular Structure and Dynamics</i> , 2018 , 36, 3094-3105	3.6	2
17	Are accurate computations of the 13C' shielding feasible at the DFT level of theory?. <i>Journal of Computational Chemistry</i> , 2014 , 35, 309-12	3.5	2
16	Effects on protein structure and function of replacing tryptophan with 5-hydroxytryptophan: single-tryptophan mutants of the N-terminal domain of the bacteriophage lambda repressor. <i>The Protein Journal</i> , 1996 , 15, 77-86		2
15	State of aggregation of recombinant hirudin in solution under physiological conditions. <i>The Protein Journal</i> , 1996 , 15, 751-3		2
14	From secondary structure to three-dimensional structure: Improved dihedral angle probability distribution function for use with energy searches for native structures of polypeptides and proteins. <i>Journal of Computational Chemistry</i> , 1996 , 17, 1453-1480	3.5	2
13	Conformational Analysis of Polypeptides and Proteins for the Study of Protein Folding, Molecular Recognition, and Molecular Design. <i>Israel Journal of Chemistry</i> , 1986 , 27, 144-155	3.4	2
12	Comparison of intramolecular and intermolecular reactions in protein folding. <i>The Protein Journal</i> , 1986 , 5, 29-49		2
11	The structure of protein dynamic space. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 19938-19942	11.5	2
10	Influence of lysine content and PH on the stability of alanine-based copolypeptides 2001 , 58, 235		2
9	Phase transitions in synthetic polymers of amino acids, and their relation to protein folding. <i>Ferroelectrics</i> , 1980 , 30, 157-158	0.6	1
8	Outline of an experimental design aimed to detect a protein A mirror image in solution. <i>PeerJ Physical Chemistry</i> , 2019 , 1,		1
7	Hierarchical energy-based approach to protein-structure prediction: Blind-test evaluation with CASP3 targets 2000 , 77, 90		1
6	PMFF: Development of a Physics-Based Molecular Force Field for Protein Simulation and Ligand Docking. <i>Journal of Physical Chemistry B</i> , 2020 , 124, 974-989	3.4	O

5	George Hess: A scientific appreciation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 1466-7	11.5
4	Paul J Flory IThe man who laid the foundations of modern polymer science 2003 , 8, 2-5	
3	Experimental and theoretical protein folding. <i>Journal of Biomolecular Structure and Dynamics</i> , 1989 , 6, 1039-43	3.6
2	Monte Carlo studies of oligopeptide conformation. <i>Ferroelectrics</i> , 1980 , 30, 159-159	0.6
1	Probing Protein Aggregation Using the Coarse-Grained UNRES Force Field <i>Methods in Molecular Biology</i> , 2022 , 2340, 79-104	1.4