Eduard Generozov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5417717/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Isolation of exosomes by differential centrifugation: Theoretical analysis of a commonly used protocol. Scientific Reports, 2015, 5, 17319.	3.3	430
2	Genome-scale analysis of DNA methylation in colorectal cancer using Infinium HumanMethylation450 BeadChips. Epigenetics, 2013, 8, 921-934.	2.7	130
3	No Evidence of a Common DNA Variant Profile Specific to World Class Endurance Athletes. PLoS ONE, 2016, 11, e0147330.	2.5	96
4	Athlome Project Consortium: a concerted effort to discover genomic and other "omic―markers of athletic performance. Physiological Genomics, 2016, 48, 183-190.	2.3	96
5	Coronary heart disease diagnosis by artificial neural networks including genetic polymorphisms and clinical parameters. Journal of Cardiology, 2012, 59, 190-194.	1.9	80
6	GENOME-WIDE ASSOCIATION STUDY IDENTIFIES THREE NOVEL GENETIC MARKERS ASSOCIATED WITH ELITE ENDURANCE PERFORMANCE . Biology of Sport, 2014, 32, 3-9.	3.2	64
7	UBR5 is a novel E3 ubiquitin ligase involved in skeletal muscle hypertrophy and recovery from atrophy. Journal of Physiology, 2019, 597, 3727-3749.	2.9	53
8	A Genome-Wide Association Study of Sprint Performance in Elite Youth Football Players. Journal of Strength and Conditioning Research, 2019, 33, 2344-2351.	2.1	47
9	Matrix-Assisted Laser Desorption Ionization-Time of Flight (Mass Spectrometry) for Hepatitis C Virus Genotyping. Journal of Clinical Microbiology, 2005, 43, 2810-2815.	3.9	39
10	<i>AGTR2</i> gene polymorphism is associated with muscle fibre composition, athletic status and aerobic performance. Experimental Physiology, 2014, 99, 1042-1052.	2.0	36
11	Genome-Wide Association Study Reveals a Novel Association Between MYBPC3 Gene Polymorphism, Endurance Athlete Status, Aerobic Capacity and Steroid Metabolism. Frontiers in Genetics, 2020, 11, 595.	2.3	30
12	The association of HFE gene H63D polymorphism with endurance athlete status and aerobic capacity: novel findings and a meta-analysis. European Journal of Applied Physiology, 2020, 120, 665-673.	2.5	29
13	Nucleotide sequence of carnation ringspot dianthovirus RNA-1. Journal of General Virology, 1994, 75, 243-247.	2.9	28
14	<i>SOD2</i> gene polymorphism and muscle damage markers in elite athletes. Free Radical Research, 2014, 48, 948-955.	3.3	27
15	Circulating Extracellular miRNA Analysis in Patients with Stable CAD and Acute Coronary Syndromes. Biomolecules, 2021, 11, 962.	4.0	26
16	The A-allele of the FTO Gene rs9939609 Polymorphism Is Associated With Decreased Proportion of Slow Oxidative Muscle Fibers and Over-represented in Heavier Athletes. Journal of Strength and Conditioning Research, 2019, 33, 691-700.	2.1	24
17	Whole genome sequencing of elite athletes. Biology of Sport, 2020, 37, 295-304.	3.2	22
18	Elevated Plasma Levels of Circulating Extracellular miR-320a-3p in Patients with Paroxysmal Atrial Fibrillation. International Journal of Molecular Sciences, 2020, 21, 3485.	4.1	19

Eduard Generozov

#	Article	IF	CITATIONS
19	Polygenic Profile of Elite Strength Athletes. Journal of Strength and Conditioning Research, 2022, 36, 2509-2514.	2.1	19
20	Striated muscle-specific serine/threonine-protein kinase beta segregates with high versus low responsiveness to endurance exercise training. Physiological Genomics, 2020, 52, 35-46.	2.3	17
21	Association of FGFR3 and MDM2 Gene Nucleotide Polymorphisms with Bone Tumors. Bulletin of Experimental Biology and Medicine, 2012, 153, 870-874.	0.8	15
22	The GALNTL6 Gene rs558129 Polymorphism Is Associated With Power Performance. Journal of Strength and Conditioning Research, 2020, 34, 3031-3036.	2.1	15
23	Three DNA Polymorphisms Previously Identified as Markers for Handgrip Strength Are Associated With Strength in Weightlifters and Muscle Fiber Hypertrophy. Journal of Strength and Conditioning Research, 2019, 33, 2602-2607.	2.1	14
24	Are Genome-Wide Association Study Identified Single-Nucleotide Polymorphisms Associated With Sprint Athletic Status? A Replication Study With 3 Different Cohorts. International Journal of Sports Physiology and Performance, 2021, 16, 489-495.	2.3	14
25	AGTR2 and sprint/power performance: a case-control replication study for rs11091046 polymorphism in two ethnicities. Biology of Sport, 2018, 35, 105-109.	3.2	12
26	Genomic predictors of testosterone levels are associated with muscle fiber size and strength. European Journal of Applied Physiology, 2021, , 1.	2.5	11
27	Prediction of muscle fiber composition using multiple repetition testing. Biology of Sport, 2021, 38, 277-283.	3.2	10
28	Association of muscle fiber composition with health and exercise-related traits in athletes and untrained subjects. Biology of Sport, 2021, 38, 659-666.	3.2	10
29	Genes and Weightlifting Performance. Genes, 2022, 13, 25.	2.4	10
30	Detection and characterization of defective interfering RNAs associated with the cocksfoot mottle sobemovirus. Molecular Biology, 2000, 34, 291-296.	1.3	7
31	LogLoss-BERAF: An ensemble-based machine learning model for constructing highly accurate diagnostic sets of methylation sites accounting for heterogeneity in prostate cancer. PLoS ONE, 2018, 13, e0204371.	2.5	6
32	The Variability of DNA Structure and Muscle-Fiber Composition. Human Physiology, 2019, 45, 225-232.	0.4	6
33	CKM Gene rs8111989 Polymorphism and Power Athlete Status. Genes, 2021, 12, 1499.	2.4	6
34	Is testosterone responsible for athletic success in female athletes?. Journal of Sports Medicine and Physical Fitness, 2020, 60, 1377-1382.	0.7	6
35	Association of Genetically Predicted BCAA Levels with Muscle Fiber Size in Athletes Consuming Protein. Genes, 2022, 13, 397.	2.4	5
36	Association of haplotypes of interleukin-10 gene with the risk of cancer. Bulletin of Experimental Biology and Medicine, 2007, 144, 385-389.	0.8	4

EDUARD GENEROZOV

#	Article	IF	CITATIONS
37	The methylation status of GSTP1, APC, and RASSF1 genes in human prostate cancer samples: Comparative analysis of diagnostic informativeness of MS-HRM and hybridization on the Illumina Infinium HumanMethylation450 BeadChip. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 2017, 11, 194-201.	0.4	3
38	Different Association of CRY1 and CLOCK Circadian Genes with Coronary Atherosclerosis. Journal of Clinical & Experimental Cardiology, 2014, 05, .	0.0	3
39	CD81 and CD117 Surface Markers Profiling of Prostate Cancer Urinary Exosomes Using CD9 Magnetic Beads. BioNanoScience, 2017, 7, 226-228.	3.5	2
40	A Novel Multilocus Genetic Model Can Predict Muscle Fibers Composition. Advances in Intelligent Systems and Computing, 2018, , 164-168.	0.6	1
41	Targeted Gene Sequencing Panels: Applicability for Neoantigen Profiling of Colon and Rectal Adenocarcinoma. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 2019, 13, 146-153.	0.4	1
42	Data on somatic mutations obtained by whole exome sequencing of FFPE tissue samples from Russian patients with prostate cancer. Data in Brief, 2019, 25, 104022.	1.0	0
43	The median number of COPD exacerbations per year in patients with different polymorphisms of the gene ADRB2. , 2015, , .		0
44	A Genome-wide Association Study For Muscle Fiber Composition. Medicine and Science in Sports and Exercise, 2019, 51, 575-575.	0.4	0