
Arturo Hernandez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5417665/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Type 3 deiodinase is critical for the maturation and function of the thyroid axis. Journal of Clinical Investigation, 2006, 116, 476-484.	3.9	290
2	Defining the Roles of the lodothyronine Deiodinases: Current Concepts and Challenges. Endocrinology, 2009, 150, 1097-1107.	1.4	254
3	A Protective Role for Type 3 Deiodinase, a Thyroid Hormone-Inactivating Enzyme, in Cochlear Development and Auditory Function. Endocrinology, 2009, 150, 1952-1960.	1.4	139
4	Pregnant rat uterus expresses high levels of the type 3 iodothyronine deiodinase. Journal of Clinical Investigation, 1999, 103, 979-987.	3.9	136
5	Type 3 Deiodinase, a Thyroid-Hormone-Inactivating Enzyme, Controls Survival and Maturation of Cone Photoreceptors. Journal of Neuroscience, 2010, 30, 3347-3357.	1.7	133
6	The GeneLocusEncoding lodothyronine Deiodinase Type 3 (Dio3) Is Imprinted in the Fetus and Expresses Antisense Transcripts. Endocrinology, 2002, 143, 4483-4486.	1.4	123
7	Type 3 Deiodinase Deficiency Results in Functional Abnormalities at Multiple Levels of the Thyroid Axis. Endocrinology, 2007, 148, 5680-5687.	1.4	82
8	Structure and Function of the Type 3 Deiodinase Gene. Thyroid, 2005, 15, 865-874.	2.4	77
9	Type 3 Deiodinase Deficiency Causes Spatial and Temporal Alterations in Brain T3 Signaling that Are Dissociated from Serum Thyroid Hormone Levels. Endocrinology, 2010, 151, 5550-5558.	1.4	77
10	Imprinted Gene Dosage Is Critical for the Transition to Independent Life. Cell Metabolism, 2012, 15, 209-221.	7.2	72
11	Distinct Roles of Deiodinases on the Phenotype of Mct8 Defect: A Comparison of Eight Different Mouse Genotypes. Endocrinology, 2011, 152, 1180-1191.	1.4	69
12	The Thyroid Hormone-Inactivating Type III Deiodinase Is Expressed in Mouse and Human β-Cells and Its Targeted Inactivation Impairs Insulin Secretion. Endocrinology, 2011, 152, 3717-3727.	1.4	68
13	Critical Role of Types 2 and 3 Deiodinases in the Negative Regulation of Gene Expression by T3 in the Mouse Cerebral Cortex. Endocrinology, 2012, 153, 2919-2928.	1.4	65
14	Cerebellar Abnormalities in Mice Lacking Type 3 Deiodinase and Partial Reversal of Phenotype by Deletion of Thyroid Hormone Receptor I±1. Endocrinology, 2013, 154, 550-561.	1.4	53
15	Impaired Bacterial Clearance in Type 3 Deiodinase-Deficient Mice Infected with Streptococcus pneumoniae. Endocrinology, 2009, 150, 1984-1990.	1.4	52
16	Retarded Developmental Expression and Patterning of Retinal Cone Opsins in Hypothyroid Mice. Endocrinology, 2009, 150, 1536-1544.	1.4	52
17	Complex organization and structure of sense and antisense transcripts expressed from the DIO3 gene imprinted locus. Genomics, 2004, 83, 413-424.	1.3	50
18	Localization of the Type 3 lodothyronine Deiodinase (DIO3) Gene to Human Chromosome 14q32 and Mouse Chromosome 12F1. Genomics, 1998, 53, 119-121.	1.3	47

ARTURO HERNANDEZ

#	Article	IF	CITATIONS
19	The Type 2 lodothyronine Deiodinase Is Expressed in the Rat Uterus and Induced During Pregnancy*. Endocrinology, 2001, 142, 2123-2128.	1.4	45
20	Gene Expression from the Imprinted Dio3 Locus Is Associated with Cell Proliferation of Cultured Brown Adipocytes. Endocrinology, 2007, 148, 3968-3976.	1.4	43
21	Regulation of Intracellular Triiodothyronine Is Essential for Optimal Macrophage Function. Endocrinology, 2018, 159, 2241-2252.	1.4	43
22	Life Without the lodothyronine Deiodinases. Endocrinology, 2014, 155, 4081-4087.	1.4	36
23	Thyroid hormone influences brain gene expression programs and behaviors in later generations by altering germ line epigenetic information. Molecular Psychiatry, 2020, 25, 939-950.	4.1	35
24	Genomic Imprinting Variations in the Mouse Type 3 Deiodinase Gene Between Tissues and Brain Regions. Molecular Endocrinology, 2014, 28, 1875-1886.	3.7	34
25	Increased aggression and lack of maternal behavior in Dio3â€deficient mice are associated with abnormalities in oxytocin and vasopressin systems. Genes, Brain and Behavior, 2018, 17, 23-35.	1.1	33
26	The Type 3 Deiodinase Is a Critical Determinant of Appropriate Thyroid Hormone Action in the Developing Testis. Endocrinology, 2016, 157, 1276-1288.	1.4	30
27	Decreased anxiety- and depression-like behaviors and hyperactivity in a type 3 deiodinase-deficient mouse showing brain thyrotoxicosis and peripheral hypothyroidism. Psychoneuroendocrinology, 2016, 74, 46-56.	1.3	29
28	Thyroid hormones and 5'-deiodinase in rat brown adipose tissue during fetal life. American Journal of Physiology - Endocrinology and Metabolism, 1989, 257, E625-E631.	1.8	28
29	The Type 3 Deiodinase: Epigenetic Control of Brain Thyroid Hormone Action and Neurological Function. International Journal of Molecular Sciences, 2018, 19, 1804.	1.8	28
30	Genomic imprinting of the type 3 thyroid hormone deiodinase gene: Regulation and developmental implications. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 3946-3955.	1.1	27
31	Type 3 Deiodinase Role on Central Thyroid Hormone Action Affects the Leptin-Melanocortin System and Circadian Activity. Endocrinology, 2017, 158, 419-430.	1.4	27
32	Thyroid hormone deiodinases: physiology and clinical disorders. Current Opinion in Pediatrics, 2003, 15, 416-420.	1.0	26
33	Thyroid Hormone Role and Economy in the Developing Testis. Vitamins and Hormones, 2018, 106, 473-500.	0.7	23
34	Dexamethasone Inhibits Growth Factor-Induced Type 3 Deiodinase Activity and mRNA Expression in a Cultured Cell Line Derived from Rat Neonatal Brown Fat Vascular-Stromal Cells. Endocrinology, 2002, 143, 2652-2658.	1.4	22
35	The Thyroid Hormone Inactivating Type 3 Deiodinase Is Essential for Optimal Neutrophil Function: Observations From Three Species. Endocrinology, 2018, 159, 826-835.	1.4	21
36	Thyroid Hormone Deiodinases: Dynamic Switches in Developmental Transitions. Endocrinology, 2021, 162, .	1.4	19

ARTURO HERNANDEZ

#	Article	IF	CITATIONS
37	Activity and response to serum of the mammalian thyroid hormone deiodinase 3 gene promoter: identification of a conserved enhancer. Molecular and Cellular Endocrinology, 2003, 206, 23-32.	1.6	18
38	Maternal Inheritance of an Inactive Type III Deiodinase Gene Allele Affects Mouse Pancreatic β-Cells and Disrupts Glucose Homeostasis. Endocrinology, 2014, 155, 3160-3171.	1.4	17
39	Genomic imprinting of DIO3, a candidate gene for the syndrome associated with human uniparental disomy of chromosome 14. European Journal of Human Genetics, 2016, 24, 1617-1621.	1.4	15
40	Deletion of the Thyroid Hormone–Activating Type 2 Deiodinase Rescues Cone Photoreceptor Degeneration but Not Deafness in Mice Lacking Type 3 Deiodinase. Endocrinology, 2017, 158, 1999-2010.	1.4	13
41	Thyroid hormone action in the developing testis: intergenerational epigenetics. Journal of Endocrinology, 2020, 244, R33-R46.	1.2	13
42	Perturbations to the IGF 1 growth pathway and adult energy homeostasis following disruption of mouse chromosome 12 imprinting. Acta Physiologica, 2014, 210, 174-187.	1.8	12
43	MCT8 Deficiency in Male Mice Mitigates the Phenotypic Abnormalities Associated With the Absence of a Functional Type 3 Deiodinase. Endocrinology, 2016, 157, 3266-3277.	1.4	12
44	Thyroid hormone deiodination and action in the gonads. Current Opinion in Endocrine and Metabolic Research, 2018, 2, 18-23.	0.6	12
45	The Type 3 Deiodinase Is a Critical Modulator of Thyroid Hormone Sensitivity in the Fetal Brain. Frontiers in Neuroscience, 2021, 15, 703730.	1.4	9
46	The Type 2 lodothyronine Deiodinase Is Expressed in the Rat Uterus and Induced During Pregnancy. , 0, .		9
47	Adult onset of type 3 deiodinase deficiency in mice alters brain gene expression and increases locomotor activity. Psychoneuroendocrinology, 2019, 110, 104439.	1.3	8
48	Spermatogonial Type 3 Deiodinase Regulates Thyroid Hormone Target Genes in Developing Testicular Somatic Cells. Endocrinology, 2019, 160, 2929-2945.	1.4	8
49	Beyond Genes: Germline Disruption in the Etiology of Autism Spectrum Disorders. Journal of Autism and Developmental Disorders, 2022, 52, 4608-4624.	1.7	6
50	Cognitive function in hypothyroidism: what is that deiodinase again?. Journal of Clinical Investigation, 2018, 129, 55-57.	3.9	5
51	Thyroid Hormone and Alcoholic Fatty Liver: The Developmental Input. Alcoholism: Clinical and Experimental Research, 2019, 43, 1834-1837.	1.4	3
52	Thyroid hormone overexposure decreases DNA methylation in germ cells of newborn male mice. Molecular Psychiatry, 2020, 25, 915-915.	4.1	3
53	Deletion of α-Synuclein in Prrx1-positive cells causes partial loss of function in the central nervous system (CNS) but does not affect ovariectomy induced bone loss. Bone, 2020, 137, 115428.	1.4	3
54	Spermatogonial Dio3 as a potential germ line sensor for thyroid hormone-driven epigenetic inheritance. Biology of Reproduction, 2021, 105, 613-615.	1.2	2

#	Article	IF	CITATIONS
55	Toward Epigenetic Profiling of Thyroid Hormone Status. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e2444-e2446.	1.8	1
56	ABCD of Thyroid Hormone Action: <i>A</i> fter and <i>B</i> efore <i>C</i> loning of <i>D</i> eiodinase Genes. Endocrinology, 2021, 162, .	1.4	1
57	DEIODINASE PROTECTION OF THE FETUS FROM THYROID HORMONES. Biochemical Society Transactions, 1999, 27, A6-A6.	1.6	0