List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5417576/publications.pdf Version: 2024-02-01

IAN SEIREDT

#	Article	IF	CITATIONS
1	Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. Journal of Hydrology, 2012, 456-457, 12-29.	5.4	1,315
2	On the calculation of the topographic wetness index: evaluation of different methods based on field observations. Hydrology and Earth System Sciences, 2006, 10, 101-112.	4.9	624
3	The role of topography on catchment-scale water residence time. Water Resources Research, 2005, 41, .	4.2	571
4	On the dialog between experimentalist and modeler in catchment hydrology: Use of soft data for multicriteria model calibration. Water Resources Research, 2002, 38, 23-1-23-14.	4.2	476
5	Twenty-three unsolved problems in hydrology (UPH) – a community perspective. Hydrological Sciences Journal, 2019, 64, 1141-1158.	2.6	474
6	Teaching hydrological modeling with a user-friendly catchment-runoff-model software package. Hydrology and Earth System Sciences, 2012, 16, 3315-3325.	4.9	369
7	Is bias correction of regional climate model (RCM) simulations possible for non-stationary conditions?. Hydrology and Earth System Sciences, 2013, 17, 5061-5077.	4.9	306
8	Resolving the Double Paradox of rapidly mobilized old water with highly variable responses in runoff chemistry. Hydrological Processes, 2004, 18, 185-189.	2.6	300
9	Regionalisation of parameters for a conceptual rainfall-runoff model. Agricultural and Forest Meteorology, 1999, 98-99, 279-293.	4.8	298
10	Regional Climate Models for Hydrological Impact Studies at the Catchment Scale: A Review of Recent Modeling Strategies. Geography Compass, 2010, 4, 834-860.	2.7	288
11	Multi-criteria calibration of a conceptual runoff model using a genetic algorithm. Hydrology and Earth System Sciences, 2000, 4, 215-224.	4.9	282
12	How old is streamwater? Open questions in catchment transit time conceptualization, modelling and analysis. Hydrological Processes, 2010, 24, 1745-1754.	2.6	276
13	A new triangular multiple flow direction algorithm for computing upslope areas from gridded digital elevation models. Water Resources Research, 2007, 43, .	4.2	275
14	Topographical influences on soil properties in boreal forests. Geoderma, 2007, 141, 139-148.	5.1	251
15	<i>Aqua Incognita</i> : the unknown headwaters. Hydrological Processes, 2008, 22, 1239-1242.	2.6	246
16	Prediction uncertainty of conceptual rainfall-runoff models caused by problems in identifying model parameters and structure. Hydrological Sciences Journal, 1999, 44, 779-797.	2.6	226
17	Modeling spatial patterns of saturated areas: A comparison of the topographic wetness index and a dynamic distributed model. Journal of Hydrology, 2009, 373, 15-23.	5.4	223
18	How does landscape structure influence catchment transit time across different geomorphic provinces?. Hydrological Processes, 2009, 23, 945-953.	2.6	207

#	Article	IF	CITATIONS
19	Calibration of hydrological models using flow-duration curves. Hydrology and Earth System Sciences, 2011, 15, 2205-2227.	4.9	203
20	The role of catchment scale and landscape characteristics for runoff generation of boreal streams. Journal of Hydrology, 2007, 344, 198-209.	5.4	202
21	Estimation of Parameter Uncertainty in the HBV Model. Hydrology Research, 1997, 28, 247-262.	2.7	201
22	Effects of DEM resolution on the calculation of topographical indices: TWI and its components. Journal of Hydrology, 2007, 347, 79-89.	5.4	201
23	Linking soil- and stream-water chemistry based on a Riparian Flow-Concentration Integration Model. Hydrology and Earth System Sciences, 2009, 13, 2287-2297.	4.9	197
24	Gauging the ungauged basin: how many discharge measurements are needed?. Hydrology and Earth System Sciences, 2009, 13, 883-892.	4.9	196
25	Robust changes and sources of uncertainty in the projected hydrological regimes of Swiss catchments. Water Resources Research, 2014, 50, 7541-7562.	4.2	182
26	A new topographic index to quantify downslope controls on local drainage. Water Resources Research, 2004, 40, .	4.2	177
27	Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM). I: Model intercomparison with current land use. Advances in Water Resources, 2009, 32, 129-146.	3.8	177
28	Hydrological flow paths during snowmelt: Congruence between hydrometric measurements and oxygen 18 in meltwater, soil water, and runoff. Water Resources Research, 2004, 40, .	4.2	176
29	Scale effects on headwater catchment runoff timing, flow sources, and groundwater-streamflow relations. Water Resources Research, 2004, 40, .	4.2	176
30	Plant Species Numbers Predicted by a Topography-based Groundwater Flow Index. Ecosystems, 2005, 8, 430-441.	3.4	160
31	Evaluation of different downscaling techniques for hydrological climate-change impact studies at the catchment scale. Climate Dynamics, 2011, 37, 2087-2105.	3.8	160
32	Distributed assessment of contributing area and riparian buffering along stream networks. Water Resources Research, 2003, 39, .	4.2	147
33	On the relationships between catchment scale and streamwater mean residence time. Hydrological Processes, 2003, 17, 175-181.	2.6	144
34	Dissolved Inorganic Carbon Export Across the Soil/Stream Interface and Its Fate in a Boreal Headwater Stream. Environmental Science & Technology, 2009, 43, 7364-7369.	10.0	138
35	Reliability of Model Predictions Outside Calibration Conditions. Hydrology Research, 2003, 34, 477-492.	2.7	135
36	Groundwater dynamics along a hillslope: A test of the steady state hypothesis. Water Resources Research, 2003, 39, .	4.2	133

#	Article	IF	CITATIONS
37	Does model performance improve with complexity? A case study with three hydrological models. Journal of Hydrology, 2015, 523, 147-159.	5.4	132
38	Stageâ€discharge uncertainty derived with a nonâ€stationary rating curve in the Choluteca River, Honduras. Hydrological Processes, 2011, 25, 603-613.	2.6	129
39	Assessing the impact of land use change on hydrology by ensemble modelling (LUCHEM) II: Ensemble combinations and predictions. Advances in Water Resources, 2009, 32, 147-158.	3.8	128
40	Crossâ€regional prediction of longâ€term trajectory of stream water DOC response to climate change. Geophysical Research Letters, 2012, 39, .	4.0	127
41	Riparian zone hydrology and soil water total organic carbon (TOC): implications for spatial variability and upscaling of lateral riparian TOC exports. Biogeosciences, 2012, 9, 3901-3916.	3.3	121
42	Interâ€catchment comparison to assess the influence of topography and soils on catchment transit times in a geomorphic province; the Cairngorm mountains, Scotland. Hydrological Processes, 2009, 23, 1874-1886.	2.6	115
43	Evaluating model performance: towards a non-parametric variant of the Kling-Gupta efficiency. Hydrological Sciences Journal, 2018, 63, 1941-1953.	2.6	113
44	On the need for benchmarks in hydrological modelling. Hydrological Processes, 2001, 15, 1063-1064.	2.6	112
45	The value of multiple data set calibration versus model complexity for improving the performance of hydrological models in mountain catchments. Water Resources Research, 2015, 51, 1939-1958.	4.2	109
46	Modeling spatial patterns of saturated areas: An evaluation of different terrain indices. Water Resources Research, 2004, 40, .	4.2	107
47	Wetland occurrence in relation to topography: a test of topographic indices as moisture indicators. Agricultural and Forest Meteorology, 1999, 98-99, 325-340.	4.8	106
48	On the value of glacier mass balances for hydrological model calibration. Journal of Hydrology, 2010, 385, 238-246.	5.4	105
49	Comparison of hydrological model structures based on recession and low flow simulations. Hydrology and Earth System Sciences, 2011, 15, 3447-3459.	4.9	104
50	Interâ€comparison of hydroâ€climatic regimes across northern catchments: synchronicity, resistance and resilience. Hydrological Processes, 2010, 24, 3591-3602.	2.6	103
51	Catchment water storage variation with elevation. Hydrological Processes, 2017, 31, 2000-2015.	2.6	103
52	Accelerating advances in continental domain hydrologic modeling. Water Resources Research, 2015, 51, 10078-10091.	4.2	102
53	Estimation of permafrost thawing rates in a sub-arctic catchment using recession flow analysis. Hydrology and Earth System Sciences, 2009, 13, 595-604.	4.9	101
54	Land-cover impacts on streamflow: a change-detection modelling approach that incorporates parameter uncertainty. Hydrological Sciences Journal, 2010, 55, 316-332.	2.6	94

#	Article	IF	CITATIONS
55	Multi-criterial validation of TOPMODEL in a mountainous catchment. Hydrological Processes, 1999, 13, 1603-1620.	2.6	93
56	Floodâ€ŧype classification in mountainous catchments using crisp and fuzzy decision trees. Water Resources Research, 2015, 51, 7959-7976.	4.2	88
57	A test of TOPMODEL'a ability to predict spatially distributed groundwater levels. Hydrological Processes, 1997, 11, 1131-1144.	2.6	87
58	Simulating interactions between saturated and unsaturated storage in a conceptual runoff model. Hydrological Processes, 2003, 17, 379-390.	2.6	87
59	Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM) III: Scenario analysis. Advances in Water Resources, 2009, 32, 159-170.	3.8	87
60	Upper and lower benchmarks in hydrological modelling. Hydrological Processes, 2018, 32, 1120-1125.	2.6	85
61	Dynamics of stream water TOC concentrations in a boreal headwater catchment: Controlling factors and implications for climate scenarios. Journal of Hydrology, 2009, 373, 44-56.	5.4	84
62	Regional water balance modelling in the NOPEX area: development and application of monthly water balance models. Journal of Hydrology, 1996, 180, 211-236.	5.4	82
63	Water storage in a till catchment. II: Implications of transmissivity feedback for flow paths and turnover times. Hydrological Processes, 2011, 25, 3950-3959.	2.6	80
64	Continuous long-term measurements of soil-plant-atmosphere variables at a forest site. Agricultural and Forest Meteorology, 1999, 98-99, 53-73.	4.8	78
65	A drought index accounting for snow. Water Resources Research, 2014, 50, 7861-7872.	4.2	78
66	Effects of wildfire on catchment runoff response: a modelling approach to detect changes in snow-dominated forested catchments. Hydrology Research, 2010, 41, 378-390.	2.7	73
67	Topographic controls on shallow groundwater levels in a steep, prealpine catchment: When are the TWI assumptions valid?. Water Resources Research, 2014, 50, 6067-6080.	4.2	72
68	Stable oxygen and hydrogen isotopes in sub-Arctic lake waters from northern Sweden. Journal of Hydrology, 2009, 376, 143-151.	5.4	70
69	Temporal sampling strategies and uncertainty in calibrating a conceptual hydrological model for a small boreal catchment. Hydrological Processes, 2009, 23, 3093-3109.	2.6	69
70	Progressive water deficits during multiyear droughts in basins with long hydrological memory in Chile. Hydrology and Earth System Sciences, 2021, 25, 429-446.	4.9	67
71	Conceptualization in catchment modelling: simply learning?. Hydrological Processes, 2008, 22, 2389-2393.	2.6	65
72	Flood type specific construction of synthetic design hydrographs. Water Resources Research, 2017, 53, 1390-1406.	4.2	65

#	Article	IF	CITATIONS
73	Toward catchment hydroâ€biogeochemical theories. Wiley Interdisciplinary Reviews: Water, 2021, 8, e1495.	6.5	65
74	Catchmentâ€scale estimates of flow path partitioning and water storage based on transit time and runoff modelling. Hydrological Processes, 2011, 25, 3960-3976.	2.6	64
75	Bivariate return periods and their importance for flood peak and volume estimation. Wiley Interdisciplinary Reviews: Water, 2016, 3, 819-833.	6.5	63
76	Snow redistribution for the hydrological modeling of alpine catchments. Wiley Interdisciplinary Reviews: Water, 2017, 4, e1232.	6.5	63
77	Effects of univariate and multivariate bias correction on hydrological impact projections in alpine catchments. Hydrology and Earth System Sciences, 2019, 23, 1339-1354.	4.9	63
78	Virtual Staff Gauges for Crowd-Based Stream Level Observations. Frontiers in Earth Science, 2019, 7, .	1.8	63
79	Controls on snowmelt water mean transit times in northern boreal catchments. Hydrological Processes, 2010, 24, 1672-1684.	2.6	62
80	Riparian soil temperature modification of the relationship between flow and dissolved organic carbon concentration in a boreal stream. Water Resources Research, 2011, 47, .	4.2	62
81	Hillslope–riparianâ€stream connectivity and flow directions at the Panola Mountain Research Watershed. Hydrological Processes, 2015, 29, 3556-3574.	2.6	62
82	Gauging the Ungauged Basin: Relative Value of Soft and Hard Data. Journal of Hydrologic Engineering - ASCE, 2015, 20, .	1.9	60
83	How uncertainty analysis of streamflow data can reduce costs and promote robust decisions in water management applications. Water Resources Research, 2017, 53, 5220-5228.	4.2	60
84	Importance of maximum snow accumulation for summer low flows in humid catchments. Hydrology and Earth System Sciences, 2016, 20, 859-874.	4.9	60
85	Use of color maps and wavelet coherence to discern seasonal and interannual climate influences on streamflow variability in northern catchments. Water Resources Research, 2013, 49, 6194-6207.	4.2	59
86	Location and density of rain gauges for the estimation of spatial varying precipitation. Geografiska Annaler, Series A: Physical Geography, 2015, 97, 167-179.	1.5	58
87	Landscape controls on spatiotemporal discharge variability in a boreal catchment. Water Resources Research, 2016, 52, 6541-6556.	4.2	58
88	Specific discharge variability in a boreal landscape. Water Resources Research, 2012, 48, .	4.2	56
89	Catchments on the cusp? Structural and functional change in northern ecohydrology. Hydrological Processes, 2013, 27, 766-774.	2.6	55
90	Comparison of threshold hydrologic response across northern catchments. Hydrological Processes, 2015, 29, 3575-3591.	2.6	55

#	Article	IF	CITATIONS
91	Expansion and contraction of the flowing stream network alter hillslope flowpath lengths and the shape of the travel time distribution. Hydrology and Earth System Sciences, 2019, 23, 4825-4834.	4.9	54
92	Forest Harvest Increases Runoff Most during Low Flows in Two Boreal Streams. Ambio, 2009, 38, 357-363.	5.5	53
93	Spatial variation in discharge and concentrations of organic carbon in a catchment network of boreal streams in northern Sweden. Journal of Hydrology, 2007, 342, 72-87.	5.4	52
94	Spatial variability in the isotopic composition of rainfall in a small headwater catchment and its effect on hydrograph separation. Journal of Hydrology, 2017, 547, 755-769.	5.4	52
95	Modeling of Future Changes in Seasonal Snowpack and Impacts on Summer Low Flows in Alpine Catchments. Water Resources Research, 2018, 54, 538-556.	4.2	52
96	Assessing the benefit of snow data assimilation for runoff modeling in Alpine catchments. Hydrology and Earth System Sciences, 2016, 20, 3895-3905.	4.9	50
97	Spatial heterogeneity of the spring flood acid pulse in a boreal stream networkâ [~] †. Science of the Total Environment, 2008, 407, 708-722.	8.0	48
98	Impact of social preparedness on flood early warning systems. Water Resources Research, 2017, 53, 522-534.	4.2	47
99	Smiling in the rain: Seven reasons to be positive about uncertainty in hydrological modelling. Hydrological Processes, 2013, 27, 1117-1122.	2.6	46
100	Bias correction for hydrological impact studies – beyond the daily perspective. Hydrological Processes, 2014, 28, 4823-4828.	2.6	46
101	Model Calibration Criteria for Estimating Ecological Flow Characteristics. Water (Switzerland), 2015, 7, 2358-2381.	2.7	44
102	Propagation of biases in climate models from the synoptic to the regional scale: Implications for bias adjustment. Journal of Geophysical Research D: Atmospheres, 2016, 121, 2075-2089.	3.3	44
103	Global Fully Distributed Parameter Regionalization Based on Observed Streamflow From 4,229 Headwater Catchments. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031485.	3.3	44
104	Geostatistical investigation into the temporal evolution of spatial structure in a shallow water table. Hydrology and Earth System Sciences, 2006, 10, 113-125.	4.9	43
105	Contributing sources to baseflow in preâ€elpine headwaters using spatial snapshot sampling. Hydrological Processes, 2015, 29, 5321-5336.	2.6	43
106	Pre-event water contributions to runoff events of different magnitude in pre-alpine headwaters. Hydrology Research, 2017, 48, 28-47.	2.7	43
107	Variability of groundwater levels and total organic carbon in the riparian zone of a boreal catchment. Journal of Geophysical Research, 2011, 116, .	3.3	42
108	Regional water balance modelling using flow-duration curves with observational uncertainties. Hydrology and Earth System Sciences, 2014, 18, 2993-3013.	4.9	42

#	Article	IF	CITATIONS
109	Multiscale calibration and validation of a conceptual rainfall-runoff model. Physics and Chemistry of the Earth, 2000, 25, 59-64.	0.3	40
110	Evolution of soil solution aluminum during transport along a forested boreal hillslope. Journal of Geophysical Research, 2007, 112, .	3.3	38
111	Groundwater dynamics in a till hillslope: flow directions, gradients and delay. Hydrological Processes, 2011, 25, 1899-1909.	2.6	37
112	Prediction of hydrographs and flow-duration curves in almost ungauged catchments: Which runoff measurements are most informative for model calibration?. Journal of Hydrology, 2017, 554, 613-622.	5.4	37
113	Appropriate temporal resolution of precipitation data for discharge modelling in pre-alpine catchments. Hydrological Sciences Journal, 2018, 63, 1-16.	2.6	37
114	Distribution of soil moisture and groundwater levels at patch and catchment scales. Agricultural and Forest Meteorology, 1999, 98-99, 305-324.	4.8	36
115	Value of different precipitation data for flood prediction in an alpine catchment: A Bayesian approach. Journal of Hydrology, 2018, 556, 961-971.	5.4	36
116	Change in winter climate will affect dissolved organic carbon and water fluxes in midâ€ŧoâ€high latitude catchments. Hydrological Processes, 2013, 27, 700-709.	2.6	35
117	Streamflow characteristics from modeled runoff time series – importance of calibration criteria selection. Hydrology and Earth System Sciences, 2017, 21, 5443-5457.	4.9	35
118	Hydrological Modeling to Evaluate Climate Model Simulations and Their Bias Correction. Journal of Hydrometeorology, 2018, 19, 1321-1337.	1.9	35
119	The role of landscape properties, storage and evapotranspiration on variability in streamflow recessions in a boreal catchment. Journal of Hydrology, 2019, 570, 315-328.	5.4	35
120	Information content of stream level class data for hydrological model calibration. Hydrology and Earth System Sciences, 2017, 21, 4895-4905.	4.9	34
121	Crowd-Based Observations of Riverine Macroplastic Pollution. Frontiers in Earth Science, 2020, 8, .	1.8	34
122	Testing the Waters: Mobile Apps for Crowdsourced Streamflow Data. Eos, 2018, 99, .	0.1	34
123	New Approach to the Measurement of Interception Evaporation. Journal of Atmospheric and Oceanic Technology, 1997, 14, 1023-1035.	1.3	33
124	Sensing with boots and trousers — qualitative field observations of shallow soil moisture patterns. Hydrological Processes, 2012, 26, 4112-4120.	2.6	33
125	Predictability of low flow – An assessment with simulation experiments. Journal of Hydrology, 2014, 519, 1383-1393.	5.4	33
126	Is groundwater response timing in a preâ€alpine catchment controlled more by topography or by rainfall?. Hydrological Processes, 2016, 30, 1036-1051.	2.6	33

#	Article	IF	CITATIONS
127	Citizens AND HYdrology (CANDHY): conceptualizing a transdisciplinary framework for citizen science addressing hydrological challenges. Hydrological Sciences Journal, 2022, 67, 2534-2551.	2.6	33
128	Your work is my boundary condition!. Journal of Hydrology, 2019, 571, 235-243.	5.4	33
129	Irrigania – a web-based game about sharing water resources. Hydrology and Earth System Sciences, 2012, 16, 2523-2530.	4.9	31
130	The assumption of uniform specific discharge: unsafe at any time?. Hydrological Processes, 2016, 30, 3978-3988.	2.6	31
131	Magic components—why quantifying rain, snowmelt, and icemelt in river discharge is not easy. Hydrological Processes, 2018, 32, 160-166.	2.6	31
132	Technical note: Representing glacier geometry changes in a semi-distributed hydrological model. Hydrology and Earth System Sciences, 2018, 22, 2211-2224.	4.9	31
133	Synthetic design hydrographs for ungauged catchments: a comparison of regionalization methods. Stochastic Environmental Research and Risk Assessment, 2018, 32, 1993-2023.	4.0	30
134	Effective precipitation duration for runoff peaks based on catchment modelling. Journal of Hydrology, 2018, 556, 510-522.	5.4	30
135	Seasonal and runoff-related changes in total organic carbon concentrations in the River Öre, Northern Sweden. Aquatic Sciences, 2008, 70, 21-29.	1.5	29
136	Water storage in a till catchment. I: Distributed modelling and relationship to runoff. Hydrological Processes, 2011, 25, 3937-3949.	2.6	29
137	Hydrological change detection using modeling: Half a century of runoff from four rivers in the Blue Nile Basin. Water Resources Research, 2013, 49, 3842-3851.	4.2	29
138	The CrowdWater game: AÂplayful way to improve the accuracy of crowdsourced water level class data. PLoS ONE, 2019, 14, e0222579.	2.5	29
139	A retrospective on hydrological catchment modelling based on half a century with the HBV model. Hydrology and Earth System Sciences, 2022, 26, 1371-1388.	4.9	29
140	Evaporation and storage of intercepted rain analysed by comparing two models applied to a boreal forest. Agricultural and Forest Meteorology, 1999, 98-99, 595-604.	4.8	28
141	Continuous long-term measurements of soil–plant–atmosphere variables at an agricultural site. Agricultural and Forest Meteorology, 1999, 98-99, 75-102.	4.8	28
142	Tracer Hydrology. , 2011, , 215-236.		28
143	How informative are stream level observations in different geographic regions?. Hydrological Processes, 2016, 30, 2498-2508.	2.6	28
144	Glacioâ€hydrological model calibration and evaluation. Wiley Interdisciplinary Reviews: Water, 2020, 7, e1483.	6.5	28

JAN SEIBERT

#	Article	IF	CITATIONS
145	Quantifying sensitivity to droughts – an experimental modeling approach. Hydrology and Earth System Sciences, 2015, 19, 1371-1384.	4.9	27
146	Aqua temporaria incognita. Hydrological Processes, 2020, 34, 5704-5711.	2.6	27
147	Ensemble modelling of nitrogen fluxes: data fusion for a Swedish meso-scale catchment. Hydrology and Earth System Sciences, 2010, 14, 2383-2397.	4.9	26
148	Modelling rating curves using remotely sensed LiDAR data. Hydrological Processes, 2012, 26, 1427-1434.	2.6	26
149	The long-term hydrology of East Africa's water tower: statistical change detection in the watersheds of the Abbay Basin. Regional Environmental Change, 2014, 14, 321-331.	2.9	26
150	Sub-daily runoff predictions using parameters calibrated on the basis of data with a daily temporal resolution. Journal of Hydrology, 2017, 550, 399-411.	5.4	26
151	Hydrological model calibration with uncertain discharge data. Hydrological Sciences Journal, 2022, 67, 2441-2456.	2.6	26
152	Nitrogen source apportionment modeling and the effect of land-use class related runoff contributions. Hydrology Research, 2007, 38, 317-331.	2.7	25
153	HELPing FRIENDs in PUBs: charting a course for synergies within international water research programmes in gauged and ungauged basins. Hydrological Processes, 2006, 20, 1867-1874.	2.6	24
154	Preface "Hydrology education in a changing world". Hydrology and Earth System Sciences, 2013, 17, 1393-1399.	4.9	24
155	Bivariate analysis of floods in climate impact assessments. Science of the Total Environment, 2018, 616-617, 1392-1403.	8.0	24
156	Reducing systematic errors in rainfall measurements using a new type of gauge. Agricultural and Forest Meteorology, 1999, 98-99, 341-348.	4.8	23
157	Assessing the degree of detail of temperature-based snow routines for runoff modelling in mountainous areas in central Europe. Hydrology and Earth System Sciences, 2020, 24, 4441-4461.	4.9	23
158	Calculating terrain indices along streams: A new method for separating stream sides. Water Resources Research, 2010, 46, .	4.2	22
159	Flood-type trend analysis for alpine catchments. Hydrological Sciences Journal, 2020, 65, 1281-1299.	2.6	22
160	Can a regionalized model parameterisation be improved with a limited number of runoff measurements?. Journal of Hydrology, 2015, 529, 49-61.	5.4	21
161	Hydrological change modeling: Challenges and opportunities. Hydrological Processes, 2016, 30, 4966-4971.	2.6	21
162	Value of uncertain streamflow observations for hydrological modelling. Hydrology and Earth System Sciences, 2018, 22, 5243-5257.	4.9	21

#	Article	IF	CITATIONS
163	Value of Crowdâ€Based Water Level Class Observations for Hydrological Model Calibration. Water Resources Research, 2020, 56, e2019WR026108.	4.2	21
164	Quality and timing of crowdâ€based water level class observations. Hydrological Processes, 2020, 34, 4365-4378.	2.6	21
165	Understanding conditions behind speleothem formation in Korallgrottan, northwestern Sweden. Journal of Hydrology, 2007, 347, 13-22.	5.4	20
166	Test of statistical means for the extrapolation of soil depth point information using overlays of spatial environmental data and bootstrapping techniques. Hydrological Processes, 2009, 23, 3017-3029.	2.6	20
167	Using landscape characteristics to define an adjusted distance metric for improving kriging interpolations. International Journal of Geographical Information Science, 2010, 24, 723-740.	4.8	20
168	True colors – experimental identification of hydrological processes at a hillslope prone to slide. Hydrology and Earth System Sciences, 2014, 18, 875-892.	4.9	20
169	The role of soil pH in linking groundwater flow and plant species density in boreal forest landscapes. Ecography, 2006, 29, 515-524.	4.5	19
170	Identification of Flood Reactivity Regions via the Functional Clustering of Hydrographs. Water Resources Research, 2018, 54, 1852-1867.	4.2	19
171	Accuracy of crowdsourced streamflow and stream level class estimates. Hydrological Sciences Journal, 2020, 65, 823-841.	2.6	19
172	Hydrological response to warm and dry weather: do glaciers compensate?. Hydrology and Earth System Sciences, 2021, 25, 3245-3265.	4.9	19
173	Rapid transformation of inorganic to organic and plant-available phosphorous in soils of a glacier forefield. Geoderma, 2012, 189-190, 215-226.	5.1	18
174	Conceptual Modelling to Assess Hydrological Impacts and Evaluate Environmental Flow Scenarios in Montane River Systems Regulated for Hydropower. River Research and Applications, 2015, 31, 1066-1081.	1.7	18
175	Value of a Limited Number of Discharge Observations for Improving Regionalization: A Largeâ€Sample Study Across the United States. Water Resources Research, 2019, 55, 363-377.	4.2	18
176	Regionalization for Ungauged Catchments — Lessons Learned From a Comparative Large‣ample Study. Water Resources Research, 2021, 57, e2021WR030437.	4.2	18
177	Distributed conceptual modelling in a Swedish lowland catchment: a multi-criteria model assessment. Hydrology Research, 2013, 44, 318-333.	2.7	17
178	Measuring the significance of a divide to local drainage patterns. International Journal of Geographical Information Science, 2013, 27, 1453-1468.	4.8	16
179	When should stream water be sampled to be most informative for event-based, multi-criteria model calibration?. Hydrology Research, 2017, 48, 1566-1584.	2.7	16
180	Water storage dynamics in a till hillslope: the foundation for modeling flows and turnover times. Hydrological Processes, 2017, 31, 4-14.	2.6	16

#	Article	lF	CITATIONS
181	An Approach for Including Consideration of Stream Water Dissolved Organic Carbon in Long Term Forest Planning. Ambio, 2009, 38, 387-394.	5.5	14
182	Runoff generation in a pre-alpine catchment: A discussion between a tracer and a shallow groundwater hydrologist. Cuadernos De Investigacion Geografica, 2018, 44, 429-452.	1.1	14
183	Historical glacier outlines from digitized topographic maps of the Swiss Alps. Earth System Science Data, 2018, 10, 805-814.	9.9	14
184	Soil Information in Hydrologic Models. , 2012, , 515-536.		13
185	Snow and Ice in the Hydrosphere. , 2015, , 99-137.		13
186	Robustness of flood-model calibration using single and multiple events. Hydrological Sciences Journal, 2020, 65, 842-853.	2.6	13
187	Do stream water solute concentrations reflect when connectivity occurs in a small, pre-Alpine headwater catchment?. Hydrology and Earth System Sciences, 2020, 24, 3381-3398.	4.9	13
188	Validation and Over-Parameterization—Experiences from Hydrological Modeling. Simulation Foundations, Methods and Applications, 2019, , 811-834.	0.1	12
189	Sensitivity of discharge projections to potential evapotranspiration estimation in Northern Tunisia. Regional Environmental Change, 2020, 20, 1.	2.9	12
190	Gauging ungauged catchments – Active learning for the timing of point discharge observations in combination with continuous water level measurements. Journal of Hydrology, 2021, 598, 126448.	5.4	12
191	Effect of DEM-smoothing and -aggregation on topographically-based flow directions and catchment boundaries. Journal of Hydrology, 2021, 602, 126717.	5.4	12
192	Representative sets of design hydrographs for ungauged catchments: A regional approach using probabilistic region memberships. Advances in Water Resources, 2018, 112, 235-244.	3.8	11
193	Influence of hydro-meteorological data spatial aggregation on streamflow modelling. Journal of Hydrology, 2016, 541, 1212-1220.	5.4	10
194	Utilization of Global Precipitation Datasets in Data Limited Regions: A Case Study of Kilombero Valley, Tanzania. Atmosphere, 2017, 8, 246.	2.3	10
195	The quest for an improved dialog between modeler and experimentalist. Water Science and Application, 2003, , 301-315.	0.3	9
196	Downsizing parameter ensembles for simulations of rare floods. Natural Hazards and Earth System Sciences, 2020, 20, 3521-3549.	3.6	9
197	Hydroclimatic and hydrochemical controls on Plecoptera diversity and distribution in northern freshwater ecosystems. Hydrobiologia, 2012, 693, 39-53.	2.0	8
198	Learning about water resource sharing through game play. Hydrology and Earth System Sciences, 2016, 20, 4079-4091.	4.9	8

#	Article	IF	CITATIONS
199	What is the best time to take stream isotope samples for event-based model calibration?. Journal of Hydrology, 2019, 577, 123950.	5.4	8
200	Flood prediction using parameters calibrated on limited discharge data and uncertain rainfall scenarios. Hydrological Sciences Journal, 2020, 65, 1512-1524.	2.6	8
201	Incorporating landscape characteristics in a distance metric for interpolating between observations of stream water chemistry. Hydrology and Earth System Sciences, 2008, 12, 1229-1239.	4.9	8
202	Risks and opportunities for aÂSwiss hydroelectricity company in aÂchanging climate. Hydrology and Earth System Sciences, 2020, 24, 3815-3833.	4.9	8
203	Definitions of climatological and discharge days: do they matter in hydrological modelling?. Hydrological Sciences Journal, 2018, 63, 836-844.	2.6	7
204	Assessing the Sampling Quality of a Low-Tech Low-Budget Volume-Based Rainfall Sampler for Stable Isotope Analysis. Frontiers in Earth Science, 2019, 7, .	1.8	7
205	Training citizen scientists through an online game developed for data quality control. Geoscience Communication, 2020, 3, 109-126.	0.9	7
206	Qualitative soil moisture assessment in semi-arid Africa – the role of experience and training on inter-rater reliability. Hydrology and Earth System Sciences, 2015, 19, 3505-3516.	4.9	5
207	The Role of Prosocialness and Trust in the Consumption of Water as a Limited Resource. Frontiers in Psychology, 2017, 8, 694.	2.1	5
208	Multi-model data fusion as a tool for PUB: example in a Swedish mesoscale catchment. Advances in Geosciences, 0, 29, 43-50.	12.0	5
209	Evaluating the long short-term memory (LSTM) network for discharge prediction under changing climate conditions. Hydrology Research, 2022, 53, 657-667.	2.7	5
210	Comment on "On the calibration and verification of two-dimensional, distributed, Hortonian, continuous watershed models" by Sharika U. S. Senarath et al Water Resources Research, 2001, 37, 3393-3395.	4.2	4
211	Preface "Towards holistic studies of the Earth's Critical Zone: hydropedology perspectives". Hydrology and Earth System Sciences, 2010, 14, 479-480.	4.9	4
212	On the risk of obtaining misleading results by pooling streamflow data for trend analyses. Water Resources Research, 2012, 48, .	4.2	4
213	Analysis of hydrological seasonality across northern catchments using monthly precipitation–runoff polygon metrics. Hydrological Sciences Journal, 2014, 59, 56-72.	2.6	4
214	Change in streamflow response in unregulated catchments in Sweden over the last century. Water Resources Research, 2016, 52, 5847-5867.	4.2	4
215	Soil moisture storage estimation based on steady vertical fluxes under equilibrium. Journal of Hydrology, 2017, 553, 798-804.	5.4	4
216	Effects of Spatial Variability in the Groundwater Isotopic Composition on Hydrograph Separation Results for a Preâ€Alpine Headwater Catchment. Water Resources Research, 2020, 56, e2019WR026855.	4.2	4

#	Article	IF	CITATIONS
217	Hydrological trends and the evolution of catchment research in the Alptal valley, central Switzerland. Hydrological Processes, 2021, 35, e14113.	2.6	4
218	The Maimai <scp>M8</scp> experimental catchment database: Forty years of processâ€based research on steep, wet hillslopes. Hydrological Processes, 2021, 35, e14112.	2.6	4
219	Evaluating the effects of alternative model structures on dynamic storage simulation in heterogeneous boreal catchments. Hydrology Research, 2022, 53, 562-583.	2.7	4
220	A primer for hydrology: the beguiling simplicity of <i>Water's journey from rain to stream</i> at 30. Hydrological Processes, 2015, 29, 3443-3446.	2.6	3
221	Effect of Observation Errors on the Timing of the Most Informative Isotope Samples for Event-Based Model Calibration. Hydrology, 2018, 5, 4.	3.0	3
222	Snow and ice in the hydrosphere. , 2021, , 93-135.		3
223	Formation and decay of peat bogs in the vegetable belt of Switzerland. Swiss Journal of Geosciences, 2021, 114, .	1.2	2
224	Hydrological Impacts of Projected Climate Change on Northern Tunisian Headwater Catchments—An Ensemble Approach Addressing Uncertainties. Climate Change Management, 2022, , 499-519.	0.8	2
225	Representation of Biâ€Directional Fluxes Between Groundwater and Surface Water in a Bucketâ€Type Hydrological Model. Water Resources Research, 2021, 57, e2020WR028835.	4.2	1
226	The CH-IRP data set: a decade of fortnightly data on <i>Î'</i> ² H and <i>Î'</i> ¹⁸ O in streamflow and precipitation in Switzerland. Earth System Science Data, 2020, 12, 3057-3066.	9.9	0