Rui Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5417214/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly sensitive detection of three protein toxins via SERS-lateral flow immunoassay based on SiO2@Au nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 41, 102522.	3.3	15
2	Automatic and sensitive detection of West Nile virus non-structural protein 1 with a portable SERS–LFIA detector. Mikrochimica Acta, 2021, 188, 206.	5.0	13
3	Portable and multiplexed lateral flow immunoassay reader based on SERS for highly sensitive point-of-care testing. Biosensors and Bioelectronics, 2020, 168, 112524.	10.1	77
4	Rapid identification and antibiotic susceptibility test of pathogens in blood based on magnetic separation and surface-enhanced Raman scattering. Mikrochimica Acta, 2019, 186, 475.	5.0	43
5	Smartphone-based fluorescent lateral flow immunoassay platform for highly sensitive point-of-care detection of Zika virus nonstructural protein 1. Analytica Chimica Acta, 2019, 1055, 140-147.	5.4	129
6	Dual‧elective and Dualâ€Enhanced SERS Nanoprobes Strategy for Circulating Hepatocellular Carcinoma Cells Detection. Chemistry - A European Journal, 2018, 24, 7060-7067.	3.3	43
7	Fast and non-invasive serum detection technology based on surface-enhanced Raman spectroscopy and multivariate statistical analysis for liver disease. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 451-459.	3.3	44
8	Dual dye-loaded Au@Ag coupled to a lateral flow immunoassay for the accurate and sensitive detection of <i>Mycoplasma pneumoniae</i> infection. RSC Advances, 2018, 8, 21243-21251.	3.6	44
9	Magnetic immunoassay for cancer biomarker detection based on surface-enhanced resonance Raman scattering from coupled plasmonic nanostructures. Biosensors and Bioelectronics, 2016, 84, 15-21.	10.1	66
10	Hotspots engineering by grafting Au@Ag core-shell nanoparticles on the Au film over slightly etched nanoparticles substrate for on-site paraquat sensing. Biosensors and Bioelectronics, 2016, 86, 944-950.	10.1	39
11	Facile Synthesis of Au-Coated Magnetic Nanoparticles and Their Application in Bacteria Detection via a SERS Method. ACS Applied Materials & Interfaces, 2016, 8, 19958-19967.	8.0	196
12	Fe3O4@Ag magnetic nanoparticles for microRNA capture and duplex-specific nuclease signal amplification based SERS detection in cancer cells. Biosensors and Bioelectronics, 2016, 79, 574-580.	10.1	180
13	Polyethylenimine-interlayered silver-shell magnetic-core microspheres as multifunctional SERS substrates. Journal of Materials Chemistry C, 2015, 3, 8684-8693.	5.5	65
14	Magnetically Assisted Surface-Enhanced Raman Spectroscopy for the Detection of <i>Staphylococcus aureus</i> Based on Aptamer Recognition. ACS Applied Materials & Interfaces, 2015, 7, 20919-20929.	8.0	162
15	Ultra-sensitive, high-throughput detection of infectious diarrheal diseases by portable chemiluminescence imaging. Biosensors and Bioelectronics, 2014, 57, 36-40.	10.1	18
16	Study on beam propagation through a double-adaptive-optics optical system in turbulent atmosphere. Optical and Quantum Electronics, 2013, 45, 411-421.	3.3	0