Tuantuan Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/541705/publications.pdf

Version: 2024-02-01

18 papers	641 citations	687363 13 h-index	17 g-index
18	18	18	932
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Recent advances in layered double hydroxides (LDHs) as two-dimensional membrane materials for gas and liquid separations. Journal of Membrane Science, 2018, 567, 89-103.	8.2	113
2	Controlled synthesis of MgO with diverse basic sites and its CO2 capture mechanism under different adsorption conditions. Chemical Engineering Journal, 2018, 336, 710-720.	12.7	93
3	Layered double hydroxide/graphene oxide hybrid incorporated polysulfone substrate for thin-film nanocomposite forward osmosis membranes. RSC Advances, 2016, 6, 56599-56609.	3.6	75
4	Morphology and chemical composition dependent synthesis and electrochemical properties of MnO2-based nanostructures for efficient hydrazine detection. Sensors and Actuators B: Chemical, 2016, 224, 878-884.	7.8	72
5	Fabrication of Lithium Silicates As Highly Efficient High-Temperature CO ₂ Sorbents from SBA-15 Precursor. Inorganic Chemistry, 2017, 56, 7821-7834.	4.0	41
6	Hydrothermal Fabrication of High Specific Surface Area Mesoporous MgO with Excellent CO2 Adsorption Potential at Intermediate Temperatures. Catalysts, 2017, 7, 116.	3.5	36
7	Enhanced water gas shift processes for carbon dioxide capture and hydrogen production. Applied Energy, 2019, 254, 113700.	10.1	36
8	Study on MNO $\langle sub \rangle 3\langle sub \rangle /NO\langle sub \rangle 2\langle sub \rangle$ (M = Li, Na, and K)/MgO Composites for Intermediate-Temperature CO $\langle sub \rangle 2\langle sub \rangle$ Capture. Energy & E	5.1	32
9	Novel Na2Mo4O13/α-MoO3 hybrid material as highly efficient CWAO catalyst for dye degradation at ambient conditions. Scientific Reports, 2014, 4, 6797.	3.3	31
10	Effect of Fluoride on the Morphology and Electrochemical Property of Co3O4 Nanostructures for Hydrazine Detection. Materials, $2018, 11, 207$.	2.9	22
11	Environmental Benign Synthesis of Lithium Silicates and Mg-Al Layered Double Hydroxide from Vermiculite Mineral for CO2 Capture. Catalysts, 2017, 7, 105.	3.5	21
12	Two-Dimensional Layered Double Hydroxide Derived from Vermiculite Waste Water Supported Highly Dispersed Ni Nanoparticles for CO Methanation. Catalysts, 2017, 7, 79.	3. 5	19
13	Co ₃ O ₄ nanoparticles/MWCNTs composites: a potential scaffold for hydrazine and glucose electrochemical detection. RSC Advances, 2017, 7, 50087-50096.	3.6	17
14	Synthesis and characterization of alkali metal molybdates with high catalytic activity for dye degradation. RSC Advances, 2016, 6, 54553-54563.	3.6	15
15	Facile synthesis of Co3O4/N-doped carbon nanocomposites as efficient electrode material for sensitive determination of hydrazine. Journal of Alloys and Compounds, 2020, 816, 152574.	5 . 5	12
16	Comparison of hollow fiber module designs in membrane distillation process employed lumen-side and shell-side feed. Desalination and Water Treatment, 2016, 57, 7700-7710.	1.0	4
17	Flower-Shaped Mg ₃ Al _{1â°'<i>x</i>} Fe _{<i>x</i>} â€"CO ₃ Layered Double Hydroxides Derived Adsorbents with Tunable Memory Effect for Environmental Remediation. Journal of Nanoscience and Nanotechnology, 2018, 18, 2609-2615.	0.9	1
18	High Aspect Ratio Perforated Co3O4 Nanowires Derived from Cobalt-Carbonate-Hydroxide Nanowires with Enhanced Sensing Performance. Journal of Nanoscience and Nanotechnology, 2018, 18, 3499-3504.	0.9	1