Taewan Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5416997/publications.pdf

Version: 2024-02-01

1040056 794594 28 384 9 19 citations h-index g-index papers 28 28 28 671 docs citations times ranked all docs citing authors

#	Article	IF	Citations
1	Wafer-scale production of highly uniform two-dimensional MoS ₂ by metal-organic chemical vapor deposition. Nanotechnology, 2017, 28, 18LT01.	2.6	76
2	Effects of temperature and pressure on sulfurization of molybdenum nano-sheets for MoS 2 synthesis. Thin Solid Films, 2017, 641, 79-86.	1.8	53
3	Waferâ€Scale Epitaxial 1T′, 1T′–2H Mixed, and 2H Phases MoTe ₂ Thin Films Grown by Metal–Organic Chemical Vapor Deposition. Advanced Materials Interfaces, 2018, 5, 1800439.	3.7	42
4	Heterojunction solar cell based on n-MoS2/p-InP. Optical Materials, 2018, 86, 576-581.	3.6	32
5	Two-dimensional phase-engineered 1T′– and 2H–MoTe2-based near-infrared photodetectors with ultra-fast response. Journal of Alloys and Compounds, 2019, 789, 960-965.	5. 5	24
6	van der Waals Epitaxy of High-Mobility Polymorphic Structure of Mo ₆ Te ₆ Nanoplates/MoTe ₂ Atomic Layers with Low Schottky Barrier Height. ACS Nano, 2019, 13, 642-648.	14.6	23
7	Structural defects in a nanomesh of bulk MoS2 using an anodic aluminum oxide template for photoluminescence efficiency enhancement. Scientific Reports, 2018, 8, 6648.	3.3	19
8	Enhancement of Birefringence in Reduced Graphene Oxide Doped Liquid Crystal. Nanomaterials, 2020, 10, 842.	4.1	12
9	Electrical metal contacts to atomically thin 2H-phase MoTe 2 grown by metal–organic chemical vapor deposition. Current Applied Physics, 2018, 18, 843-846.	2.4	11
10	Purcell-enhanced photoluminescence of few-layer MoS ₂ transferred on gold nanostructure arrays with plasmonic resonance at the conduction band edge. Nanoscale, 2021, 13, 5316-5323.	5.6	10
11	Van der Waals heterojunction interface passivation using ZnS nanolayer and enhanced photovoltaic behavior of semitransparent ultrathin 2D-MoS2/3D-chalcogenide solar cells. Applied Surface Science, 2021, 558, 149844.	6.1	10
12	Fabrication of plasmonic arrays of nanodisks and nanotriangles by nanotip indentation lithography and their optical properties. Nanoscale, 2021, 13, 4475-4484.	5.6	9
13	Electrical and Optical Characteristics of Two-Dimensional MoS ₂ Film Grown by Metal-Organic Chemical Vapor Deposition. Journal of Nanoscience and Nanotechnology, 2020, 20, 3563-3567.	0.9	8
14	Atomic Layer MoS2xTe2(1–x) Ternary Alloys: Two-Dimensional van der Waals Growth, Band gap Engineering, and Electrical Transport. ACS Applied Materials & Samp; Interfaces, 2020, 12, 40518-40524.	8.0	8
15	Segregation of NiTe2 and NbTe2 in p-Type Thermoelectric Bi0.5Sb1.5Te3 Alloys for Carrier Energy Filtering Effect by Melt Spinning. Applied Sciences (Switzerland), 2021, 11, 910.	2.5	8
16	Characteristics of a type-II n-MoS2/p-Ge van der Waals heterojunction. Current Applied Physics, 2020, 20, 802-806.	2.4	7
17	Characteristics of electrical metal contact to monolayer WSe2. Thin Solid Films, 2021, 719, 138508.	1.8	7
18	Cycleâ€life prediction model of lithium iron phosphateâ€based lithiumâ€ion battery module. International Journal of Energy Research, 2021, 45, 16489-16496.	4.5	5

#	Article	IF	CITATIONS
19	Thermoelectric Properties of Te-doped In0.9Si0.1Se with Enhanced Effective Mass. Electronic Materials Letters, 2021, 17, 340-346.	2.2	4
20	Thermoelectric transport properties of S-doped In0.9Si0.1Se. Journal of the Korean Ceramic Society, 2022, 59, 64-69.	2.3	4
21	Photoresponse and Field Effect Transport Studies in InAsP–InP Core–Shell Nanowires. Electronic Materials Letters, 2018, 14, 357-362.	2.2	3
22	Accurate Analysis of Schottky Barrier Height in Au/2H–MoTe2 Atomically Thin Film Contact. Electronic Materials Letters, 2021, 17, 307-314.	2.2	3
23	Top-gate field-effect transistor based on monolayer WS ₂ with an ion-gel gate dielectric. Japanese Journal of Applied Physics, 2022, 61, 034001.	1.5	3
24	Quantification of Schottky barrier height and contact resistance of a Au electrode on multilayer WSe2. Journal of the Korean Physical Society, 2022, 80, 307-310.	0.7	2
25	Investigation of Phase Segregation in p-Type Bi0.5Sb1.5Te3 Thermoelectric Alloys by In Situ Melt Spinning to Determine Possible Carrier Filtering Effect. Materials, 2021, 14, 7567.	2.9	1
26	Optical and electrical properties of monolayer ReS2 developed via chemical vapor deposition on SiO2/Si substrate. Journal of the Korean Physical Society, 2021, 78, 1109.	0.7	0
27	Comparison of Ionic Liquid and Ion-Gel Top-Gate MoS ₂ Field-Effect Transistors. Applied Science and Convergence Technology, 2021, 30, 156-158.	0.9	0
28	Performance improvement of semi-transparent ultra-thin CIGSe solar cell by transferring exfoliated WTe2 multilayered-2D flakes to ITO substrate. Applied Surface Science, 2022, 578, 151988.	6.1	0