Ivelin S Georgiev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5416874/publications.pdf

Version: 2024-02-01

41 papers

6,001 citations

257101 24 h-index 276539
41
g-index

44 all docs

44 docs citations

times ranked

44

5542 citing authors

#	Article	IF	CITATIONS
1	Focused Evolution of HIV-1 Neutralizing Antibodies Revealed by Structures and Deep Sequencing. Science, 2011, 333, 1593-1602.	6.0	788
2	Structure and immune recognition of trimeric pre-fusion HIV-1 Env. Nature, 2014, 514, 455-461.	13.7	702
3	Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies. Nature, 2014, 509, 55-62.	13.7	681
4	Broad and potent HIV-1 neutralization by a human antibody that binds the gp41–gp120 interface. Nature, 2014, 515, 138-142.	13.7	400
5	Trimeric HIV-1-Env Structures Define Glycan Shields from Clades A, B, and G. Cell, 2016, 165, 813-826.	13.5	379
6	Fusion peptide of HIV-1 as a site of vulnerability to neutralizing antibody. Science, 2016, 352, 828-833.	6.0	310
7	Structural Repertoire of HIV-1-Neutralizing Antibodies Targeting the CD4 Supersite in 14 Donors. Cell, 2015, 161, 1280-1292.	13.5	305
8	Maturation Pathway from Germline to Broad HIV-1 Neutralizer of a CD4-Mimic Antibody. Cell, 2016, 165, 449-463.	13.5	305
9	Identification of a CD4-Binding-Site Antibody to HIV that Evolved Near-Pan Neutralization Breadth. Immunity, 2016, 45, 1108-1121.	6.6	304
10	Vaccine-Induced Antibodies that Neutralize Group 1 and Group 2 Influenza A Viruses. Cell, 2016, 166, 609-623.	13.5	270
11	Epitope-based vaccine design yields fusion peptide-directed antibodies that neutralize diverse strains of HIV-1. Nature Medicine, 2018, 24, 857-867.	15.2	256
12	High-Throughput Mapping of B Cell Receptor Sequences to Antigen Specificity. Cell, 2019, 179, 1636-1646.e15.	13.5	219
13	Delineating Antibody Recognition in Polyclonal Sera from Patterns of HIV-1 Isolate Neutralization. Science, 2013, 340, 751-756.	6.0	213
14	Multi-Donor Longitudinal Antibody Repertoire Sequencing Reveals the Existence of Public Antibody Clonotypes in HIV-1 Infection. Cell Host and Microbe, 2018, 23, 845-854.e6.	5.1	100
15	Broad and Potent Neutralizing Antibodies Recognize the Silent Face of the HIV Envelope. Immunity, 2019, 50, 1513-1529.e9.	6.6	85
16	Virus-like Particles Identify an HIV V1V2 Apex-Binding Neutralizing Antibody that Lacks a Protruding Loop. Immunity, 2017, 46, 777-791.e10.	6.6	81
17	Longitudinal Analysis Reveals Early Development of Three MPER-Directed Neutralizing Antibody Lineages from an HIV-1-Infected Individual. Immunity, 2019, 50, 677-691.e13.	6.6	77
18	A Neutralizing Antibody Recognizing Primarily N-Linked Glycan Targets the Silent Face of the HIV Envelope. Immunity, 2018, 48, 500-513.e6.	6.6	66

#	Article	IF	CITATIONS
19	Potent Zika and dengue cross-neutralizing antibodies induced by Zika vaccination in a dengue-experienced donor. Nature Medicine, 2020, 26, 228-235.	15.2	61
20	Cross-reactive coronavirus antibodies with diverse epitope specificities and Fc effector functions. Cell Reports Medicine, 2021, 2, 100313.	3.3	56
21	Mapping Polyclonal HIV-1 Antibody Responses via Next-Generation Neutralization Fingerprinting. PLoS Pathogens, 2017, 13, e1006148.	2.1	51
22	Antibodyomics: bioinformatics technologies for understanding Bâ€cell immunity to <scp>HIV</scp> â€1. Immunological Reviews, 2017, 275, 108-128.	2.8	32
23	Human antibodies neutralize enterovirus D68 and protect against infection and paralytic disease. Science Immunology, 2020, 5, .	5.6	32
24	Single-cell profiling of the antigen-specific response to BNT162b2 SARS-CoV-2 RNA vaccine. Nature Communications, 2022, 13, .	5.8	28
25	Elicitation of HIV-1-neutralizing antibodies against the CD4-binding site. Current Opinion in HIV and AIDS, 2013, 8, 382-392.	1.5	27
26	Efficient discovery of SARS-CoV-2-neutralizing antibodies via B cell receptor sequencing and ligand blocking. Nature Biotechnology, 2022, 40, 1270-1275.	9.4	27
27	Prediction of VRC01 neutralization sensitivity by HIV-1 gp160 sequence features. PLoS Computational Biology, 2019, 15, e1006952.	1.5	25
28	Potent neutralization of SARS-CoV-2 variants of concern by an antibody with an uncommon genetic signature and structural mode of spike recognition. Cell Reports, 2021, 37, 109784.	2.9	20
29	Antibacterial photosensitization through activation of coproporphyrinogen oxidase. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6652-E6659.	3.3	18
30	B cell engagement with HIV-1 founder virus envelope predicts development of broadly neutralizing antibodies. Cell Host and Microbe, 2021, 29, 564-578.e9.	5.1	18
31	An antibody targeting the N-terminal domain of SARS-CoV-2 disrupts the spike trimer. Journal of Clinical Investigation, 2022, 132, .	3.9	14
32	RV144 HIV-1 vaccination impacts post-infection antibody responses. PLoS Pathogens, 2020, 16, e1009101.	2.1	13
33	High-Throughput B Cell Epitope Determination by Next-Generation Sequencing. Frontiers in Immunology, 2022, 13, 855772.	2.2	7
34	NFPws: a web server for delineating broadly neutralizing antibody specificities from serum HIV-1 neutralization data. Bioinformatics, 2019, 35, 3502-3504.	1.8	5
35	Spontaneous Glycan Reattachment Following N-Glycanase Treatment of Influenza and HIV Vaccine Antigens. Journal of Proteome Research, 2020, 19, 733-743.	1.8	5
36	Envelope characteristics in individuals who developed neutralizing antibodies targeting different epitopes in HIV-1 subtype C infection. Virology, 2020, 546, 1-12.	1.1	5

#	Article	IF	CITATIONS
37	Elicitation of Neutralizing Antibody Responses to HIV-1 Immunization with Nanoparticle Vaccine Platforms. Viruses, 2021, 13, 1296.	1.5	3
38	Polyclonal Broadly Neutralizing Antibody Activity Characterized by CD4 Binding Site and V3-Glycan Antibodies in a Subset of HIV-1 Virus Controllers. Frontiers in Immunology, 2021, 12, 670561.	2.2	3
39	Longitudinal Antibody Responses in People Who Inject Drugs Infected With Similar Human Immunodeficiency Virus Strains. Journal of Infectious Diseases, 2020, 221, 756-765.	1.9	2
40	Simultaneous Immunization with Multiple Diverse Immunogens Alters Development of Antigen-Specific Antibody-Mediated Immunity. Vaccines, 2021, 9, 964.	2.1	2
41	Sequence and functional characterization of a public HIV-specific antibody clonotype. IScience, 2022, 25, 103564.	1.9	1