Hideyuki Arata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5415840/publications.pdf

Version: 2024-02-01

623734 610901 1,025 30 14 24 citations g-index h-index papers 31 31 31 1383 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Micrografting device for testing systemic signaling in Arabidopsis. Plant Journal, 2020, 103, 918-929.	5.7	19
2	Intracellular localization of histone deacetylase HDA6 in plants. Journal of Plant Research, 2019, 132, 629-640.	2.4	7
3	Capability of tip-growing plant cells to penetrate into extremely narrow gaps. Scientific Reports, 2017, 7, 1403.	3.3	37
4	Chemotaxis assay of plant-parasitic nematodes on a gel-filled microchannel device. Sensors and Actuators B: Chemical, 2015, 221, 1483-1491.	7.8	19
5	Quantification of pollen tube attraction in response to guidance by female gametophyte tissue using artificial microscale pathway. Journal of Bioscience and Bioengineering, 2015, 120, 697-700.	2.2	10
6	Live-Cell Imaging and Optical Manipulation of Arabidopsis Early Embryogenesis. Developmental Cell, 2015, 34, 242-251.	7.0	132
7	Point-of-Care Diagnosis by Portable Microchip. Journal of the Institute of Electrical Engineers of Japan, 2015, 135, 558-561.	0.0	0
8	Poly(dimethylsiloxane)-based microdevices for studying plant reproduction. Biochemical Society Transactions, 2014, 42, 320-324.	3.4	5
9	Growth assay of individual pollen tubes arrayed by microchannel device. Microelectronic Engineering, 2014, 118, 25-28.	2.4	12
10	Fabrication of microcage arrays to fix plant ovules for long-term live imaging and observation. Sensors and Actuators B: Chemical, 2014, 191, 178-185.	7.8	15
11	Rapid Sub-attomole MicroRNA Detection on a Portable Microfluidic Chip. Analytical Sciences, 2014, 30, 129-135.	1.6	25
12	Behavior analysis of plant-parasitic nematode in a microchannel., 2013,,.		0
13	Micromanipulation and analysis of biomolecules, cells, and tissues using microfabricated devices. Plant Morphology, 2013, 25, 61-66.	0.1	0
14	Rapid and Sensitive MicroRNA Detection with Laminar Flow-Assisted Dendritic Amplification on Power-Free Microfluidic Chip. PLoS ONE, 2012, 7, e48329.	2.5	63
15	Rapid microRNA detection using power-free microfluidic chip: coaxial stacking effect enhances the sandwich hybridization. Analyst, The, 2012, 137, 3234.	3.5	57
16	High-Speed Local Heating Microdevices Enable Analysis of Biomolecular Behavior on Millisecond Time Scale. Bunseki Kagaku, 2011, 60, 325-332.	0.2	0
17	Manufacturing process and thermal characterization of a fast temperature switching microdevice for real-time biological experiments. Microsystem Technologies, 2010, 16, 1821-1824.	2.0	2
18	Direct Observation of Twisting Steps During Rad51 Polymerization on DNA. Biophysical Journal, 2010, 98, 66a.	0.5	0

#	Article	lF	CITATION
19	Direct observation of twisting steps during Rad51 polymerization on DNA. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19239-19244.	7.1	40
20	Millisecond analysis of double stranded DNA with fluorescent intercalator by micro-thermocontrol-device. Talanta, 2009, 79, 963-966.	5.5	9
21	Loop-mediated isothermal amplification of a single DNA molecule in polyacrylamide gel-based microchamber. Biomedical Microdevices, 2008, 10, 539-546.	2.8	45
22	Towards single biomolecule handling and characterization by MEMS. Analytical and Bioanalytical Chemistry, 2008, 391, 2385-2393.	3.7	15
23	Thermally Responsive Supramolecular Nanomeshes for On/Off Switching of the Rotary Motion of F ₁ â€ATPase at the Singleâ€Molecule Level. Chemistry - A European Journal, 2008, 14, 1891-1896.	3.3	30
24	Millisecond denaturation dynamics of fluorescent proteins revealed by femtoliter container on micro-thermodevice. Lab on A Chip, 2008, 8, 1436.	6.0	22
25	On-chip thermal calibration with 8 CB liquid crystal of micro-thermal device. Lab on A Chip, 2007, 7, 1600.	6.0	14
26	Temperature distribution measurement on microfabricated thermodevice for single biomolecular observation using fluorescent dye. Sensors and Actuators B: Chemical, 2006, 117, 339-345.	7.8	51
27	Microfabricated arrays of femtoliter chambers allow single molecule enzymology. Nature Biotechnology, 2005, 23, 361-365.	17. 5	332
28	Temperature Alternation by an On-Chip Microheater To Reveal Enzymatic Activity of \hat{l}^2 -Galactosidase at High Temperatures. Analytical Chemistry, 2005, 77, 4810-4814.	6.5	54
29	Enzymatic Activity Measurement at High Temperature by Pulse Heating of Micro Reactor with On-Chip Micro Heater. IEEJ Transactions on Sensors and Micromachines, 2005, 125, 234-238.	0.1	0
30	Micro Device for Local Temperature Control under Microscope. IEEJ Transactions on Sensors and Micromachines, 2004, 124, 284-288.	0.1	6