Nuno A Silva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5415407/publications.pdf Version: 2024-02-01

Νυνό Α Suva

#	Article	IF	CITATIONS
1	Full polarization random drift compensation method for quantum communication. Optics Express, 2022, 30, 6907.	1.7	6
2	Homodyne Noise Characterization in Quantum Random Number Generators. , 2021, , .		1
3	A Review of Self-Coherent Optical Transceivers: Fundamental Issues, Recent Advances, and Research Directions. Applied Sciences (Switzerland), 2021, 11, 7554.	1.3	11
4	Secret key rate of multi-ring M-APSK continuous variable quantum key distribution. Optics Express, 2021, 29, 38669.	1.7	14
5	Characterization of a Quantum Random Number Generator Based on Vacuum Fluctuations. Applied Sciences (Switzerland), 2021, 11, 7413.	1.3	6
6	Impact of imperfect homodyne detection on measurements of vacuum states shot noise. Optical and Quantum Electronics, 2020, 52, 1.	1.5	13
7	Generation and Distribution of Quantum Oblivious Keys for Secure Multiparty Computation. Applied Sciences (Switzerland), 2020, 10, 4080.	1.3	10
8	Reversal operator to compensate polarization random drifts in quantum communications. Optics Express, 2020, 28, 5035.	1.7	11
9	FPGAâ€assisted stateâ€ofâ€polarisation generation for polarisationâ€encoded optical communications. IET Optoelectronics, 2020, 14, 350-355.	1.8	5
10	The Impact of Fiber Random Birefringence in Polarization-Encoded Quantum Communications. , 2019, , .		2
11	Deterministic State-of-Polarization Generation for Polarization-Encoded Optical Communications. , 2019, , .		Ο
12	Generation and Distribution of Oblivious Keys through Quantum Communications. , 2018, , .		2
13	Optimizing the placement of spare amplifier cards to increase the achievable information rate resilience. Optical Fiber Technology, 2018, 45, 40-46.	1.4	1
14	Role of amplifiers gain on the achievable information rate of M-ary PSK and QAM constellations. Optics Communications, 2017, 383, 215-222.	1.0	2
15	Quantum communications: An engineering approach. , 2017, , .		3
16	Continuous Control of Random Polarization Rotations for Quantum Communications. Journal of Lightwave Technology, 2016, , 1-1.	2.7	10
17	Heralded single-photon source from spontaneous four-wave mixing process in lossy waveguides. Proceedings of SPIE, 2015, , .	0.8	0
18	A brief review on quantum bit commitment. Proceedings of SPIE, 2014, , .	0.8	3

NUNO A SILVA

#	Article	IF	CITATIONS
19	Using single photons to improve fiber optic communication systems. Proceedings of SPIE, 2014, , .	0.8	0
20	Calculation of the number of bits required for the estimation of the bit error ratio. , 2014, , .		3
21	A different way to verify the violation of the WWŻB inequality. European Physical Journal D, 2014, 68, 1.	0.6	1
22	Comprehensive characterization of a heralded single photon source based on four-wave mixing in optical fibers. Optics Communications, 2014, 327, 31-38.	1.0	5
23	Photon-pair generation in lossy waveguides. Proceedings of SPIE, 2014, , .	0.8	0
24	Using quantum technologies to improve fiber optic communication systems. , 2013, 51, 42-48.		12
25	Effects of Losses and Nonlinearities on the Generation of Polarization Entangled Photons. Journal of Lightwave Technology, 2013, 31, 1309-1317.	2.7	10
26	Characterization of a fiber based heralded single photon source at telecom wavelength. , 2013, , .		0
27	Enabling quantum communications through accurate photons polarization control. , 2013, , .		1
28	Impact of FWM process on the statistics of a co-propagating quantum signal in a WDM lightwave system. , 2012, , .		0
29	Role of Absorption on the Generation of Quantum-Correlated Photon Pairs Through FWM. IEEE Journal of Quantum Electronics, 2012, 48, 1380-1388.	1.0	12
30	Experimental characterization of the photon statistics of four-wave mixing photon source. , 2012, , .		0
31	Engineering quantum communication systems. Proceedings of SPIE, 2012, , .	0.8	0
32	Four-wave mixing: Photon statistics and the impact on a co-propagating quantum signal. Optics Communications, 2012, 285, 2956-2960.	1.0	7
33	Interference in a Quantum Channel Due to Classical Four-Wave Mixing in Optical Fibers. IEEE Journal of Quantum Electronics, 2012, 48, 472-479.	1.0	10
34	Single-photon source using stimulated FWM in optical fibers for quantum communication. Proceedings of SPIE, 2011, , .	0.8	4
35	Evolution of first-order sidebands from multiple FWM processes in HiBi optical fibers. Optics Communications, 2011, 284, 3408-3415.	1.0	8
36	Statistical characterization of a single-photon source based on stimulated FWM in optical fibers. , 2011, , .		1

NUNO A SILVA

#	Article	IF	CITATIONS
37	Optical quantum communications: an experimental approach. Proceedings of SPIE, 2011, , .	0.8	4
38	Polarization-entangled photon pairs using spontaneous four-wave mixing in a fiber loop. , 2011, , .		3
39	Evolution of the degree of co-polarization in high-birefringence fibers. Optics Communications, 2010, 283, 2125-2132.	1.0	4
40	Generalized analysis of the polarization evolution in high-birefringence fibers. , 2010, , .		0
41	Influence of the Stimulated Raman Scattering on the Four-Wave Mixing Process in Birefringent Fibers. Journal of Lightwave Technology, 2009, 27, 4979-4988.	2.7	24