Piotr Cyganik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/541472/publications.pdf

Version: 2024-02-01

41 papers

1,774 citations

279798 23 h-index 42 g-index

43 all docs 43 docs citations

43 times ranked 1450 citing authors

#	Article	IF	CITATIONS
1	Thermally Stable and Highly Conductive SAMs on Ag Substrateâ€"The Impact of the Anchoring Group. Advanced Electronic Materials, 2021, 7, 2000947.	5.1	8
2	Odd–Even Effect in Electron Beam Irradiation of Hybrid Aromatic–Aliphatic Self-Assembled Monolayers of Fatty Acid. Journal of Physical Chemistry C, 2021, 125, 9310-9318.	3.1	4
3	Odd–Even Effect in Peptide SAMs—Competition of Secondary Structure and Molecule–Substrate Interaction. Journal of Physical Chemistry B, 2021, 125, 10964-10971.	2.6	3
4	N-Heterocyclic Carbenes for the Self-Assembly of Thin and Highly Insulating Monolayers with High Quality and Stability. ACS Nano, 2020, 14, 6043-6057.	14.6	28
5	Preparation of Carbon Nanomembranes without Chemically Active Groups. ACS Applied Materials & Lamp; Interfaces, 2019, 11, 31176-31181.	8.0	15
6	Oscillation in the stability of consecutive chemical bonds at the molecule–metal interface – the case of ionic bonding. Physical Chemistry Chemical Physics, 2019, 21, 13411-13414.	2.8	2
7	Photoisomerization of azobenzene-substituted alkanethiolates on $Au(111)$ substrates in the context of work function variation: the effect of structure and packing density. Physical Chemistry Chemical Physics, 2019, 21, 9098-9105.	2.8	12
8	Odd–Even Effect in Molecular Packing of Self-Assembled Monolayers of Biphenyl-Substituted Fatty Acid on Ag(111). Journal of Physical Chemistry C, 2018, 122, 919-928.	3.1	16
9	Anomalously Rapid Tunneling: Charge Transport across Self-Assembled Monolayers of Oligo(ethylene) Tj ETQq1	1 0,78431 13.7	14 rgBT /Overl
10	Binding groups for highly ordered SAM formation: carboxylic versus thiol. Chemical Communications, 2017, 53, 5748-5751.	4.1	23
11	Relative Stability of Thiolate and Selenolate SAMs on Ag(111) Substrate Studied by Static SIMS. Oscillation in Stability of Consecutive Chemical Bonds. Journal of Physical Chemistry C, 2017, 121, 459-470.	3.1	13
12	Relative Thermal Stability of Thiolate- and Selenolate-Bonded Aromatic Monolayers on the Au(111) Substrate. Journal of Physical Chemistry C, 2017, 121, 28031-28042.	3.1	33
13	Tunneling across SAMs Containing Oligophenyl Groups. Journal of Physical Chemistry C, 2016, 120, 11331-11337.	3.1	43
14	Charge Tunneling along Short Oligoglycine Chains. Angewandte Chemie - International Edition, 2015, 54, 14743-14747.	13.8	36
15	Oscillations in the Stability of Consecutive Chemical Bonds Revealed by Ionâ€Induced Desorption. Angewandte Chemie - International Edition, 2015, 54, 1336-1340.	13.8	17
16	Characterizing the Metal–SAM Interface in Tunneling Junctions. ACS Nano, 2015, 9, 1471-1477.	14.6	41
17	Thiolate <i>versus</i> Selenolate: Structure, Stability, and Charge Transfer Properties. ACS Nano, 2015, 9, 4508-4526.	14.6	69
18	Odd–Even Effects in the Structure and Stability of Azobenzene-Substituted Alkanethiolates on Au(111) and Ag(111) Substrates. Journal of Physical Chemistry C, 2015, 119, 25929-25944.	3.1	27

#	Article	IF	Citations
19	Formation of Highly Ordered Self-Assembled Monolayers of Alkynes on Au(111) Substrate. Journal of the American Chemical Society, 2014, 136, 11918-11921.	13.7	63
20	Odd–Even Effect in the Polymorphism of Self-Assembled Monolayers of Biphenyl-Substituted Alkaneselenolates on Au(111). Journal of Physical Chemistry C, 2012, 116, 19535-19542.	3.1	19
21	Oddâ€Even Effects in Ionâ€Beamâ€Induced Desorption of Biphenylâ€Substituted Alkanethiol Selfâ€Assembled Monolayers. ChemPhysChem, 2011, 12, 140-144.	2.1	12
22	Ionâ∈Beamâ∈Induced Desorption as a Method for Probing the Stability of the Moleculeâ∈Substrate Interface in Selfâ∈Assembled Monolayers. ChemPhysChem, 2011, 12, 2554-2557.	2.1	8
23	Relative stability of thiol and selenol based SAMs on Au(111) $\hat{a}\in$ " exchange experiments. Physical Chemistry Chemical Physics, 2010, 12, 4400.	2.8	52
24	Self-assembled monolayers of perfluoroterphenyl-substituted alkanethiols: specific characteristics and odd–even effects. Physical Chemistry Chemical Physics, 2010, 12, 12123.	2.8	63
25	Effect of the Bending Potential on Molecular Arrangement in Alkaneselenolate Self-Assembled Monolayers. Journal of Physical Chemistry C, 2008, 112, 12495-12506.	3.1	47
26	Phase-Dependent Desorption from Biphenyl-Substituted Alkanethiol Self-Assembled Monolayers Induced by Ion Irradiation. Journal of Physical Chemistry C, 2008, 112, 2248-2251.	3.1	7
27	Oddâ^'Even Effect in Molecular Packing of Biphenyl-Substituted Alkaneselenolate Self-Assembled Monolayers on Au(111): Scanning Tunneling Microscopy Study. Journal of Physical Chemistry C, 2008, 112, 15466-15473.	3.1	59
28	Influence of Molecular Structure on Phase Transitions:  A Study of Self-Assembled Monolayers of 2-(Aryl)-ethane Thiols. Journal of Physical Chemistry C, 2007, 111, 16909-16919.	3.1	60
29	A Comprehensive Study of Self-Assembled Monolayers of Anthracenethiol on Gold:Â Solvent Effects, Structure, and Stability. Journal of the American Chemical Society, 2006, 128, 1723-1732.	13.7	150
30	Competition as a Design Concept:Â Polymorphism in Self-Assembled Monolayers of Biphenyl-Based Thiols. Journal of the American Chemical Society, 2006, 128, 13868-13878.	13.7	91
31	Stress in Self-Assembled Monolayers: ï‰-Biphenyl Alkane Thiols on Au(111). Journal of Physical Chemistry B, 2005, 109, 10902-10908.	2.6	77
32	Modification and Stability of Aromatic Self-Assembled Monolayers upon Irradiation with Energetic Particles. Journal of Physical Chemistry B, 2005, 109, 5085-5094.	2.6	32
33	Self-Assembled Monolayers of Aromatic Selenolates on Noble Metal Substrates. Journal of Physical Chemistry B, 2005, 109, 13630-13638.	2.6	112
34	Self-Assembled Monolayers of Semifluorinated Alkaneselenolates on Noble Metal Substrates. Langmuir, 2005, 21, 8204-8213.	3.5	58
35	Polymorphism in Biphenyl-Based Self-Assembled Monolayers of Thiols. Journal of the American Chemical Society, 2004, 126, 5960-5961.	13.7	77
36	Self-Assembled Monolayers of ω-Biphenylalkanethiols on Au(111):  Influence of Spacer Chain on Molecular Packing. Journal of Physical Chemistry B, 2004, 108, 4989-4996.	2.6	157

PIOTR CYGANIK

#	Article	IF	CITATIONS
37	Pronounced Oddâ^'Even Changes in the Molecular Arrangement and Packing Density of Biphenyl-Based Thiol SAMs:Â A Combined STM and LEED Study. Langmuir, 2003, 19, 8262-8270.	3 . 5	155
38	In situ observation of particle-induced desorption from a self-assembled monolayer by laser-ionization mass spectrometry. Applied Physics Letters, 2003, 82, 1114-1116.	3.3	8
39	Surface-directed phase separation in nanometer polymer films: self-stratification and pattern replication. E-Polymers, 2002, 2, .	3.0	1
40	Emission of neutral molecules from ion-bombarded thiol self-assembled monolayers. Nuclear Instruments & Methods in Physics Research B, 2001, 182, 148-154.	1.4	13
41	Ion-induced erosion of organic self-assembled monolayers. Nuclear Instruments & Methods in Physics Research B, 1999, 148, 137-142.	1.4	12