
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/541443/publications.pdf Version: 2024-02-01

YIIEDIII LII

#	Article	IF	CITATIONS
1	Extraordinary Photoluminescence and Strong Temperature/Angle-Dependent Raman Responses in Few-Layer Phosphorene. ACS Nano, 2014, 8, 9590-9596.	7.3	604
2	Selective Etching of Metallic Carbon Nanotubes by Gas-Phase Reaction. Science, 2006, 314, 974-977.	6.0	489
3	Producing air-stable monolayers of phosphorene and their defect engineering. Nature Communications, 2016, 7, 10450.	5.8	443
4	Two-Dimensional CH ₃ NH ₃ PbI ₃ Perovskite: Synthesis and Optoelectronic Application. ACS Nano, 2016, 10, 3536-3542.	7.3	359
5	Optical tuning of exciton and trion emissions in monolayer phosphorene. Light: Science and Applications, 2015, 4, e312-e312.	7.7	276
6	Ultrathin Metal–Organic Framework: An Emerging Broadband Nonlinear Optical Material for Ultrafast Photonics. Advanced Optical Materials, 2018, 6, 1800561.	3.6	268
7	Manyâ€Body Complexes in 2D Semiconductors. Advanced Materials, 2019, 31, e1706945.	11.1	255
8	High-Efficiency Ordered Silicon Nano-Conical-Frustum Array Solar Cells by Self-Powered Parallel Electron Lithography. Nano Letters, 2010, 10, 4651-4656.	4.5	211
9	DNA Functionalization of Carbon Nanotubes for Ultrathin Atomic Layer Deposition of High κ Dielectrics for Nanotube Transistors with 60 mV/Decade Switching. Journal of the American Chemical Society, 2006, 128, 3518-3519.	6.6	188
10	Highly Efficient and Air-Stable Infrared Photodetector Based on 2D Layered Graphene–Black Phosphorus Heterostructure. ACS Applied Materials & Interfaces, 2017, 9, 36137-36145.	4.0	185
11	Schottky diode with Ag on (112̄0) epitaxial ZnO film. Applied Physics Letters, 2002, 80, 2132-2134.	1.5	181
12	Power generation for wearable systems. Energy and Environmental Science, 2021, 14, 2114-2157.	15.6	178
13	Hydrogenation and Hydrocarbonation and Etching of Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2006, 128, 6026-6027.	6.6	159
14	Robust Excitons and Trions in Monolayer MoTe ₂ . ACS Nano, 2015, 9, 6603-6609.	7.3	148
15	ELECTRICAL TRANSPORT PROPERTIES AND FIELD EFFECT TRANSISTORS OF CARBON NANOTUBES. Nano, 2006, 01, 1-13.	0.5	142
16	Optical Properties of Ultrashort Semiconducting Single-Walled Carbon Nanotube Capsules Down to Sub-10 nm. Journal of the American Chemical Society, 2008, 130, 6551-6555.	6.6	142
17	Giant Plasmene Nanosheets, Nanoribbons, and Origami. ACS Nano, 2014, 8, 11086-11093.	7.3	134
18	Enhanced second-harmonic generation from two-dimensional MoSe2 on a silicon waveguide. Light: Science and Applications, 2017, 6, e17060-e17060.	7.7	130

IF # ARTICLE CITATIONS Atomically thin optical lenses and gratings. Light: Science and Applications, 2016, 5, e16046-e16046. Fabrication and Deterministic Transfer of High-Quality Quantum Emitters in Hexagonal Boron Nitride. 20 3.2 100 ACS Photonics, 2018, 5, 2305-2312. xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi>WS</mml:mi></mml:mrow><mml:mn>2< , < mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi>MoS</mml:mi></mml:mi>/mml:mibw><mml:mn>2 and <mml:math Lightâ€"Matter Interactions in Phosphorene. Accounts of Chemical Research, 2016, 49, 1806-1815. 22 7.6 97 Multifunctional Optoelectronics via Harnessing Defects in Layered Black Phosphorus. Advanced 7.8 Functional Materials, 2019, 29, 1901991. Extraordinarily Bound Quasi-One-Dimensional Trions in Two-Dimensional Phosphorene Atomic 24 7.3 92 Semiconductors. ACS Nano, 2016, 10, 2046-2053. Radiation tolerance of two-dimensional material-based devices for space applications. Nature 5.8 Communications, 2019, 10, 1202. Exciton and Trion Dynamics in Bilayer MoS₂. Small, 2015, 11, 6384-6390. 26 5.2 87 Compact Cavity-Enhanced Single-Photon Generation with Hexagonal Boron Nitride. ACS Photonics, 3.2 2019, 6, 1955-1962. Efficient and Layerâ€Dependent Exciton Pumping across Atomically Thin Organic–Inorganic Typeâ€ 28 11.1 79 Heterostructures. Advanced Materials, 2018, 30, e1803986. Manipulation of photoluminescence of two-dimensional MoSe2 by gold nanoantennas. Scientific 29 1.6 Reports, 2016, 6, 22296. Excited State Biexcitons in Atomically Thin MoSe₂. ACS Nano, 2017, 11, 7468-7475. 30 7.3 68 2D Materials and Heterostructures at Extreme Pressure. Advanced Science, 2020, 7, 2002697. 5.6 68 A Soft Resistive Acoustic Sensor Based on Suspended Standing Nanowire Membranes with Point Crack 32 7.8 68 Design. Advanced Functional Materials, 2020, 30, 1910717. Layer-dependent surface potential of phosphorene and anisotropic/layer-dependent charge transfer in 33 2.8 phosphorene–gold hybrid systems. Nanoscale, 2016, 8, 129-135. Ferroelectric-Driven Exciton and Trion Modulation in Monolayer Molybdenum and Tungsten 34 7.3 61 Diselenides. ACS Nano, 2019, 13, 5335-5343. Controlled Micro/Nanodome Formation in Protonâ€Irradiated Bulk Transitionâ€Metal Dichalcogenides. 11.1 Advanced Materials, 2019, 31, e1903795.

YUERUI LU

7.8

58

³⁶ 2D Materials Based on Main Group Element Compounds: Phases, Synthesis, Characterization, and Applications. Advanced Functional Materials, 2020, 30, 2001127.

#	Article	IF	CITATIONS
37	Recent Developments in van der Waals Antiferromagnetic 2D Materials: Synthesis, Characterization, and Device Implementation. ACS Nano, 2021, 15, 17175-17213.	7.3	57
38	High-Efficiency Monolayer Molybdenum Ditelluride Light-Emitting Diode and Photodetector. ACS Applied Materials & Interfaces, 2018, 10, 43291-43298.	4.0	56
39	Mechanisms and Applications of Steady-State Photoluminescence Spectroscopy in Two-Dimensional Transition-Metal Dichalcogenides. ACS Nano, 2020, 14, 14579-14604.	7.3	56
40	Wavelengthâ€Tunable Midâ€Infrared Lasing from Black Phosphorus Nanosheets. Advanced Materials, 2020, 32, e1808319.	11.1	56
41	Exciton Brightening in Monolayer Phosphorene via Dimensionality Modification. Advanced Materials, 2016, 28, 3493-3498.	11.1	49
42	Ultrathin Ga ₂ O ₃ Glass: A Large cale Passivation and Protection Material for Monolayer WS ₂ . Advanced Materials, 2021, 33, e2005732.	11.1	49
43	Tunable unidirectional nonlinear emission from transition-metal-dichalcogenide metasurfaces. Nature Communications, 2021, 12, 5597.	5.8	49
44	Moleculeâ€Induced Conformational Change in Boron Nitride Nanosheets with Enhanced Surface Adsorption. Advanced Functional Materials, 2016, 26, 8202-8210.	7.8	47
45	Atomic localization of quantum emitters in multilayer hexagonal boron nitride. Nanoscale, 2019, 11, 14362-14371.	2.8	46
46	Inâ€Plane Isotropic/Anisotropic 2D van der Waals Heterostructures for Future Devices. Small, 2019, 15, e1804733.	5.2	46
47	Low-concentration mechanical biosensor based on a photonic crystal nanowire array. Nature Communications, 2011, 2, 578.	5.8	45
48	2D organic semiconductors, the future of green nanotechnology. Nano Materials Science, 2019, 1, 246-259.	3.9	45
49	Nonalloyed Al ohmic contacts to MgxZn1â^'xO. Journal of Electronic Materials, 2002, 31, 811-814.	1.0	43
50	Optical Harmonic Generation in 2D Materials. Advanced Functional Materials, 2022, 32, .	7.8	42
51	Vanadium-Doped Monolayer MoS ₂ with Tunable Optical Properties for Field-Effect Transistors. ACS Applied Nano Materials, 2021, 4, 769-777.	2.4	39
52	Tunable Optoelectronic Properties of WS ₂ by Local Strain Engineering and Folding. Advanced Electronic Materials, 2020, 6, 1901381.	2.6	38
53	Engineered Creation of Periodic Giant, Nonuniform Strains in MoS ₂ Monolayers. Advanced Materials Interfaces, 2020, 7, 2000621.	1.9	38
54	Room temperature single photon source using fiber-integrated hexagonal boron nitride. Journal Physics D: Applied Physics, 2017, 50, 295101.	1.3	37

#	Article	IF	CITATIONS
55	Anisotropic polaritons in van der Waals materials. InformaÄnÃ-Materiály, 2020, 2, 777-790.	8.5	36
56	Highly Enhanced Many-Body Interactions in Anisotropic 2D Semiconductors. Accounts of Chemical Research, 2018, 51, 1164-1173.	7.6	34
57	Quantifying Quasiâ€Fermi Level Splitting and Mapping its Heterogeneity in Atomically Thin Transition Metal Dichalcogenides. Advanced Materials, 2019, 31, e1900522.	11.1	34
58	A prospective future towards bio/medical technology and bioelectronics based on 2D vdWs heterostructures. Nano Research, 2020, 13, 1-17.	5.8	34
59	Two-dimensional materials for light emitting applications: Achievement, challenge and future perspectives. Nano Research, 2021, 14, 1912-1936.	5.8	34
60	Phosphorene: An emerging 2D material. Journal of Materials Research, 2017, 32, 2839-2847.	1.2	33
61	Modulated interlayer charge transfer dynamics in a monolayer TMD/metal junction. Nanoscale, 2019, 11, 418-425.	2.8	33
62	Strongly enhanced photoluminescence in nanostructured monolayer MoS ₂ by chemical vapor deposition. Nanotechnology, 2016, 27, 135706.	1.3	32
63	Multiwavelength Single Nanowire InGaAs/InP Quantum Well Light-Emitting Diodes. Nano Letters, 2019, 19, 3821-3829.	4.5	32
64	Supertransport of excitons in atomically thin organic semiconductors at the 2D quantum limit. Light: Science and Applications, 2020, 9, 116.	7.7	32
65	2D organic single crystals: Synthesis, novel physics, high-performance optoelectronic devices and integration. Materials Today, 2021, 50, 442-475.	8.3	32
66	Two-dimensional multiferroics. Nanoscale, 2021, 13, 19324-19340.	2.8	32
67	Two-step metalorganic chemical vapor deposition growth of piezoelectric ZnO thin film on SiO2/Si substrate. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2001, 19, 1850-1853.	0.9	31
68	Direct Measurement of Folding Angle and Strain Vector in Atomically Thin WS ₂ Using Second-Harmonic Generation. ACS Nano, 2020, 14, 15806-15815.	7.3	31
69	ï€-phase modulated monolayer supercritical lens. Nature Communications, 2021, 12, 32.	5.8	30
70	Extraordinary Temperature Dependent Second Harmonic Generation in Atomically Thin Layers of Transitionâ€Metal Dichalcogenides. Advanced Optical Materials, 2020, 8, 2000441.	3.6	30
71	Defect Engineering in Few‣ayer Phosphorene. Small, 2018, 14, e1704556.	5.2	27
72	Nanoscale Measurements of Elastic Properties and Hydrostatic Pressure in H ₂ â€Bulged MoS ₂ Membranes. Advanced Materials Interfaces, 2020, 7, 2001024.	1.9	26

#	Article	IF	CITATIONS
73	Emission Control from Transition Metal Dichalcogenide Monolayers by Aggregation-Induced Molecular Rotors. ACS Nano, 2020, 14, 7444-7453.	7.3	23
74	Twist-driven wide freedom of indirect interlayer exciton emission in MoS2/WS2 heterobilayers. Cell Reports Physical Science, 2021, 2, 100509.	2.8	23
75	Vacuum-Free Self-Powered Parallel Electron Lithography with Sub-35-nm Resolution. Nano Letters, 2010, 10, 2197-2201.	4.5	21
76	A New Strategy for Selective Area Growth of Highly Uniform InGaAs/InP Multiple Quantum Well Nanowire Arrays for Optoelectronic Device Applications. Advanced Functional Materials, 2022, 32, 2103057.	7.8	21
77	Performance degradation and mitigation strategies of silver nanowire networks: a review. Critical Reviews in Solid State and Materials Sciences, 2022, 47, 435-459.	6.8	21
78	Giant Photoluminescence Enhancement and Resonant Charge Transfer in Atomically Thin Two-Dimensional Cr ₂ Ge ₂ Te ₆ /WS ₂ Heterostructures. ACS Applied Materials & Interfaces, 2021, 13, 7423-7433.	4.0	19
79	Nano-engineering and nano-manufacturing in 2D materials: marvels of nanotechnology. Nanoscale Horizons, 2022, 7, 849-872.	4.1	19
80	Electrically driven light emission from hot single-walled carbon nanotubes at various temperatures and ambient pressures. Applied Physics Letters, 2007, 91, .	1.5	18
81	Optical properties of phosphorene. Chinese Physics B, 2017, 26, 034201.	0.7	16
82	A flexible electrostatic kinetic energy harvester based on electret films of electrospun nanofibers. Smart Materials and Structures, 2018, 27, 014001.	1.8	16
83	Generating strong room-temperature photoluminescence in black phosphorus using organic molecules. 2D Materials, 2019, 6, 015009.	2.0	15
84	Towards future physics and applications <i>via</i> two-dimensional material NEMS resonators. Nanoscale, 2020, 12, 22366-22385.	2.8	15
85	Carbon Nanotubes: From Growth, Placement and Assembly Control to 60mV/decade and Sub-60 mV/decade Tunnel Transistors. , 2006, , .		14
86	Photonic crystal based all-optical pressure sensor. , 2011, , .		14
87	Constraints on downconversion in atomically thick films. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 672.	0.9	13
88	Quasi-line Spectral Emissions from Highly Crystalline One-Dimensional Organic Nanowires. Nano Letters, 2019, 19, 7877-7886.	4.5	12
89	Aluminium and zinc co-doped CuInS2 QDs for enhanced trion modulation in monolayer WS2 toward improved electrical properties. Journal of Materials Chemistry C, 2019, 7, 15074-15081.	2.7	12
90	A Highâ€Efficiency Wavelengthâ€Tunable Monolayer LED with Hybrid Continuousâ€Pulsed Injection. Advanced Materials, 2021, 33, e2101375.	11.1	10

#	Article	IF	CITATIONS
91	Analysis of temperature compensated SAW modes in ZnO/SiO/sub 2//Si multilayer structures. , 0, , .		9
92	Self-powered near field electron lithography. Journal of Vacuum Science & Technology B, 2009, 27, 2537-2541.	1.3	9
93	Electronic applications of graphene mechanical resonators. IET Circuits, Devices and Systems, 2015, 9, 413-419.	0.9	8
94	Elastic and Inelastic Light–Matter Interactions in 2D Materials. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 206-213.	1.9	6
95	Regulate the polarity of phosphorene's mechanical properties by oxidation. Computational Materials Science, 2017, 139, 341-346.	1.4	5
96	An Adaptive Soft Plasmonic Nanosheet Resonator. Laser and Photonics Reviews, 2019, 13, 1800302.	4.4	5
97	Probing the chaotic boundary of a membrane resonator with nanowire arrays. Nanoscale, 2017, 9, 17524-17532.	2.8	4
98	Femtomolar sensitivity DNA photonic crystal nanowire array ultrasonic mass sensor. , 2012, , .		3
99	Blue-shifted and strongly-enhanced light emission in transition-metal dichalcogenide twisted heterobilayers. Npj 2D Materials and Applications, 2022, 6, .	3.9	3
100	Mg/sub x/Zn/sub 1-x/O: a new piezoelectric material. , 0, , .		2
101	Ultra-sensitive photon sensor based on self-assembled nanoparticle plasmonic membrane resonator. , 2016, , .		2
102	Optoelectronics: Multifunctional Optoelectronics via Harnessing Defects in Layered Black Phosphorus (Adv. Funct. Mater. 39/2019). Advanced Functional Materials, 2019, 29, 1970272.	7.8	2
103	Solar Cells: Quantifying Quasiâ€Fermi Level Splitting and Mapping its Heterogeneity in Atomically Thin Transition Metal Dichalcogenides (Adv. Mater. 25/2019). Advanced Materials, 2019, 31, 1970180.	11.1	2
104	Acoustic speaker based on high-efficiency broadband nano-pillar photonic crystal Opto-thermo-mechanical MEMS excitation. , 2011, , .		1
105	Nonlinearity-assisted frequency stabilization for nanowire array membrane oscillator. , 2013, , .		1
106	2D Nanomaterials: Moleculeâ€Induced Conformational Change in Boron Nitride Nanosheets with Enhanced Surface Adsorption (Adv. Funct. Mater. 45/2016). Advanced Functional Materials, 2016, 26, 8356-8356.	7.8	1
107	Black phosphorus: Light-matter interactions and potential applications. , 2020, , 159-173.		1
108	Analysis of BAW responses in ZnO multi-layer structures using transmission line method. , 0, , .		0

#	Article	IF	CITATIONS
109	Selective growth of ZnO nanotips using MOCVD. , 0, , .		0
110	Analysis of bulk acoustic wave response in ZnO based structures using transmission-line method. , 0, ,		0
111	Quantum Capacitance Measurement for SWNT FET with Thin ALD High-k Dielectric. Device Research Conference, IEEE Annual, 2007, , .	0.0	0
112	Radioisotope-powered ion gauge with super high stability, long life, and large sensitivity range from ultrahigh vacuum to high pressure. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, L52-L54.	0.6	0
113	Lateral electrostatic accelerometer using Radioisotope Powered Electron Lithography. , 2010, , .		0
114	(Invited) Applications of Nanowire Enabled Micro Opto-Thermal Actuation. ECS Transactions, 2012, 45, 107-116.	0.3	0
115	2D materials for nanophotonic devices. , 2015, , .		0
116	A new two-dimensional material: Phosphorene. , 2015, , .		0
117	2D Materials: Controlled Micro/Nanodome Formation in Protonâ€Irradiated Bulk Transitionâ€Metal Dichalcogenides (Adv. Mater. 44/2019). Advanced Materials, 2019, 31, 1970314.	11.1	0
118	High-speed InGaAs/InP Quantum Well Nanowire Array Light Emitting Diodes at Telecommunication Wavelength. , 2021, , .		0