
Pawan Kumar Joshi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5414161/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vegetation type and land cover mapping in a semi-arid heterogeneous forested wetland of India: comparing image classification algorithms. Environment, Development and Sustainability, 2022, 24, 3947-3966.	2.7	10
2	Unraveling the complex and dynamic Himalayan socio-ecological systems: a systematic review. Environment, Development and Sustainability, 2022, 24, 1532-1559.	2.7	5
3	Spatio-Temporal Heterogeneity in Glaciers Response Across Western Himalaya. Sustainable Development Goals Series, 2022, , 185-206.	0.2	1
4	Longâ€ŧerm spatiotemporal variability in the surface velocity of Eastern Himalayan glaciers, India. Earth Surface Processes and Landforms, 2022, 47, 1720-1733.	1.2	12
5	Indicator based assessment of food security in SAARC nations under the influence of climate change scenarios. Future Foods, 2022, 5, 100122.	2.4	13
6	Automated Delineation of Supraglacial Debris Cover Using Deep Learning and Multisource Remote Sensing Data. Remote Sensing, 2022, 14, 1352.	1.8	7
7	Spatio-temporal variations in landscape ecological risk related to road network in the Central Himalaya. Human and Ecological Risk Assessment (HERA), 2021, 27, 289-306.	1.7	32
8	A multinomial logistic model-based land use and land cover classification for the South Asian Association for Regional Cooperation nations using Moderate Resolution Imaging Spectroradiometer product. Environment, Development and Sustainability, 2021, 23, 6106-6127.	2.7	21
9	Examining the effects of green revolution led agricultural expansion on net ecosystem service values in India using multiple valuation approaches. Journal of Environmental Management, 2021, 277, 111381.	3.8	18
10	Study of habitat quality assessment using geospatial techniques in Keoladeo National Park, India. Environmental Science and Pollution Research, 2021, 28, 14105-14114.	2.7	24
11	Longitudinal study of changes in ecosystem services in a city of lakes, Bhopal, India. Energy, Ecology and Environment, 2021, 6, 408-424.	1.9	6
12	Socio-Ecological Systems (SESs)—Identification and Spatial Mapping in the Central Himalaya. Sustainability, 2021, 13, 7525.	1.6	8
13	Characterizing Khetri copper mine environment using geospatial tools. SN Applied Sciences, 2021, 3, 1.	1.5	3
14	Mapping of Agriculture Productivity Variability for the SAARC Nations in Response to Climate Change Scenario for the Year 2050. , 2021, , 249-262.		1
15	The role of information infrastructure for climate change adaptation in the socio-ecological system of the Central Himalaya: availability, utility, and gaps. Socio-Ecological Practice Research, 2021, 3, 397-410.	0.9	9
16	Comparison of spatial modelling approaches to simulate urban growth: a case study on Udaipur city, India. Geocarto International, 2020, 35, 411-433.	1.7	20
17	Climate change drives glacier retreat in Bhaga basin located in Himachal Pradesh, India. Geocarto International, 2020, 35, 1179-1198.	1.7	21
18	Assessment and visualization of inherent vulnerability of urban population in India to natural disasters. Climate and Development, 2020, 12, 532-546.	2.2	10

#	Article	IF	CITATIONS
19	Land use and climate change impacts on distribution of plant species of conservation value in Eastern Ghats, India: a simulation study. Environmental Monitoring and Assessment, 2020, 192, 86.	1.3	16
20	Examining the glacial lake dynamics in a warming climate and GLOF modelling in parts of Chandra basin, Himachal Pradesh, India. Science of the Total Environment, 2020, 714, 136455.	3.9	26
21	Assessing impact of varied social and ecological conditions on inherent vulnerability of Himalayan agriculture communities. Human and Ecological Risk Assessment (HERA), 2020, 26, 2628-2645.	1.7	11
22	A long-term and comprehensive assessment of urbanization-induced impacts on ecosystem services in the capital city of India. City and Environment Interactions, 2020, 7, 100047.	1.8	35
23	Consistency in Vulnerability Assessments of Wheat to Climate Change—A District-Level Analysis in India. Sustainability, 2020, 12, 8256.	1.6	8
24	Identification of Conservation Priority Zones Using Spatially Explicit Valued Ecosystem Services: A Case from the Indian Sundarbans. Integrated Environmental Assessment and Management, 2020, 16, 773-787.	1.6	11
25	Assessment of Urban Dynamics to Understand Spatiotemporal Differentiation at Various Scales Using Remote Sensing and Geospatial Tools. Remote Sensing, 2020, 12, 1306.	1.8	24
26	Road network drives urban ecosystems - a longitudinal analysis of impact of roads in the central Himalaya. Geocarto International, 2020, , 1-26.	1.7	1
27	Modelling Agriculture, Forestry and Other Land Use (AFOLU) in response to climate change scenarios for the SAARC nations. Environmental Monitoring and Assessment, 2020, 192, 236.	1.3	40
28	Responses of ecosystem services to natural and anthropogenic forcings: A spatial regression based assessment in the world's largest mangrove ecosystem. Science of the Total Environment, 2020, 715, 137004.	3.9	109
29	Assessing inherent vulnerability of farming communities across different biogeographical zones in Himachal Pradesh, India. Environmental Development, 2020, 33, 100506.	1.8	13
30	Examining the effects of forest fire on terrestrial carbon emission and ecosystem production in India using remote sensing approaches. Science of the Total Environment, 2020, 725, 138331.	3.9	74
31	Characterizing urban area dynamics in historic city of Kurukshetra, India, using remote sensing and spatial metric tools. Geocarto International, 2019, 34, 1584-1607.	1.7	22
32	Evaluating landscape capacity to provide spatially explicit valued ecosystem services for sustainable coastal resource management. Ocean and Coastal Management, 2019, 182, 104918.	2.0	18
33	Ecosystem service value assessment of a natural reserve region for strengthening protection and conservation. Journal of Environmental Management, 2019, 244, 208-227.	3.8	134
34	Development of glacier mapping in Indian Himalaya: a review of approaches. International Journal of Remote Sensing, 2019, 40, 6607-6634.	1.3	24
35	Farmer typology to understand differentiated climate change adaptation in Himalaya. Scientific Reports, 2019, 9, 20375.	1.6	36
36	Spatio-temporal forest cover dynamics along road networks in the Central Himalaya. Ecological Engineering, 2019, 127, 383-393.	1.6	22

Pawan Kumar Joshi

#	Article	IF	CITATIONS
37	Climate change perception: an analysis of climate change and risk perceptions among farmer types of Indian Western Himalayas. Climatic Change, 2019, 152, 103-119.	1.7	58
38	Forest Ecosystem Services in the Central Himalaya: Local Benefits and Global Relevance. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2019, 89, 785-792.	0.4	23
39	Snow cover area change and its relations with climatic variability in Kashmir Himalayas, India. Geocarto International, 2019, 34, 688-702.	1.7	33
40	Capturing forest dependency in the central Himalayan region: Variations between Oak (Quercus spp.) and Pine (Pinus spp.) dominated forest landscapes. Ambio, 2018, 47, 504-522.	2.8	25
41	Agriculture in the western Himalayas – an asset turning into a liability. Development in Practice, 2018, 28, 318-324.	0.6	21
42	Vulnerability of forests in the Himalayan region to climate change impacts and anthropogenic disturbances: a systematic review. Regional Environmental Change, 2018, 18, 1783-1799.	1.4	44
43	The Climate Change Conundrum and the Himalayan Forests: The Way Forward into the Future. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2018, 88, 837-847.	0.4	6
44	Long-term land use and land cover changes (1920–2015) in Eastern Ghats, India: Pattern of dynamics and challenges in plant species conservation. Ecological Indicators, 2018, 85, 21-36.	2.6	44
45	Demystifying vulnerability assessment of agriculture communities in the Himalayas: a systematic review. Natural Hazards, 2018, 91, 409-429.	1.6	21
46	Vulnerability of agro-ecological zones in India under the earth system climate model scenarios. Mitigation and Adaptation Strategies for Global Change, 2017, 22, 399-425.	1.0	30
47	Long-term agricultural performance and climate variability for drought assessment: a regional study from Telangana and Andhra Pradesh states, India. Geomatics, Natural Hazards and Risk, 2017, 8, 822-840.	2.0	23
48	Characterizing fragmentation trends of the Himalayan forests in the Kumaon region of Uttarakhand, India. Ecological Informatics, 2017, 38, 95-109.	2.3	24
49	Forest biomass carbon dynamics (1980–2009) in western Himalaya in the context of REDD+ policy. Environmental Earth Sciences, 2017, 76, 1.	1.3	6
50	Are Climate Extremities Changing Forest Fire Regimes in India? An Analysis Using MODIS Fire Locations During 2003–2013 and Gridded Climate Data of India Meteorological Department. Proceedings of the National Academy of Sciences India Section A - Physical Sciences, 2017, 87, 827-843.	0.8	19
51	Dynamics and determinants of land change in India: integrating satellite data with village socioeconomics. Regional Environmental Change, 2017, 17, 753-766.	1.4	45
52	Analysis of urban built-up areas and surface urban heat island using downscaled MODIS derived land surface temperature data. Geocarto International, 2017, 32, 900-918.	1.7	33
53	Downscaling of Coarse Resolution Satellite Remote Sensing Thermal Data. Springer Remote Sensing/photogrammetry, 2017, , 35-55.	0.4	0
54	Assessing forest fragmentation in north-western Himalaya: a case study from Ranikhet forest range, Uttarakhand, India. Journal of Forestry Research, 2017, 28, 319-327.	1.7	14

#	Article	IF	CITATIONS
55	Evaluation of Image Classification Algorithms on Hyperion and ASTER Data for Land Cover Classification. Proceedings of the National Academy of Sciences India Section A - Physical Sciences, 2017, 87, 855-865.	0.8	5
56	A Reflection on Image Classifications for Forest Ecology Management: Towards Landscape Mapping and Monitoring. , 2017, , 67-85.		3
57	An indicator-based approach to assess village-level social and biophysical vulnerability of agriculture communities in Uttarakhand, India. Journal of Mountain Science, 2016, 13, 2260-2271.	0.8	16
58	Inherent vulnerability of agricultural communities in Himalaya: A village-level hotspot analysis in the Uttarakhand state of India. Applied Geography, 2016, 74, 182-198.	1.7	49
59	Mapping long-term land use and land cover change in the central Himalayan region using a tree-based ensemble classification approach. Applied Geography, 2016, 74, 136-150.	1.7	35
60	Multi-temporal forest cover dynamics in Kashmir Himalayan region for assessing deforestation and forest degradation in the context of REDD+ policy. Journal of Mountain Science, 2016, 13, 1431-1441.	0.8	18
61	Predicting distribution of major forest tree species to potential impacts of climate change in the central Himalayan region. Ecological Engineering, 2016, 97, 593-609.	1.6	73
62	Mapping forests in monsoon Asia with ALOS PALSAR 50-m mosaic images and MODIS imagery in 2010. Scientific Reports, 2016, 6, 20880.	1.6	49
63	Multi-criteria approach to geographically visualize the quality of life in India. International Journal of Sustainable Development and World Ecology, 2016, 23, 469-481.	3.2	5
64	Remote sensing of alpine glaciers in visible and infrared wavelengths: a survey of advances and prospects. Geocarto International, 2016, 31, 557-574.	1.7	15
65	Mapping disaster vulnerability in India using analytical hierarchy process. Geomatics, Natural Hazards and Risk, 2016, 7, 308-325.	2.0	102
66	Numerical modelling spatial patterns of urban growth in Chandigarh and surrounding region (India) using multi-agent systems. Modeling Earth Systems and Environment, 2015, 1, 1.	1.9	15
67	Development of Decadal (1985–1995–2005) Land Use and Land Cover Database for India. Remote Sensing, 2015, 7, 2401-2430.	1.8	202
68	Estimating biomass and carbon mitigation of temperate coniferous forests using spectral modeling and field inventory data. Ecological Informatics, 2015, 25, 63-70.	2.3	51
69	A lake detection algorithm (LDA) using Landsat 8 data: A comparative approach in glacial environment. International Journal of Applied Earth Observation and Geoinformation, 2015, 38, 150-163.	1.4	50
70	Geospatial quantification and analysis of environmental changes in urbanizing city of Kolkata (India). Environmental Monitoring and Assessment, 2015, 187, 4206.	1.3	43
71	New vegetation type map of India prepared using satellite remote sensing: Comparison with global vegetation maps and utilities. International Journal of Applied Earth Observation and Geoinformation, 2015, 39, 142-159.	1.4	138
72	High resolution DEM generation for complex snow covered Indian Himalayan Region using ADS80 aerial push-broom camera: a first time attempt. Arabian Journal of Geosciences, 2015, 8, 1403-1414.	0.6	16

#	Article	IF	CITATIONS
73	A comparison of selected classification algorithms for mapping bamboo patches in lower Gangetic plains using very high resolution WorldView 2 imagery. International Journal of Applied Earth Observation and Geoinformation, 2014, 26, 298-311.	1.4	152
74	Estimating soil carbon storage and mitigation under temperate coniferous forests in the southern region of Kashmir Himalayas. Mitigation and Adaptation Strategies for Global Change, 2014, 19, 1179-1194.	1.0	24
75	Random forest classification of urban landscape using Landsat archive and ancillary data: Combining seasonal maps with decision level fusion. Applied Geography, 2014, 48, 31-41.	1.7	83
76	Assessing the potential of hyperspectral imagery to map bark beetle-induced tree mortality. Remote Sensing of Environment, 2014, 140, 533-548.	4.6	112
77	Topographic controls on spatio-temporal snow cover distribution in Northwest Himalaya. International Journal of Remote Sensing, 2014, 35, 3036-3056.	1.3	57
78	Mapping debris-covered glaciers and identifying factors affecting the accuracy. Cold Regions Science and Technology, 2014, 106-107, 161-174.	1.6	48
79	Identifying seasonal heat islands in urban settings of Delhi (India) using remotely sensed data – An anomaly based approach. Urban Climate, 2014, 9, 19-34.	2.4	54
80	Integrated approach for understanding spatio-temporal changes in forest resource distribution in the central Himalaya. Journal of Forestry Research, 2014, 25, 281-290.	1.7	9
81	Satellite Data Classification Using Open Source Support. Journal of the Indian Society of Remote Sensing, 2013, 41, 523-530.	1.2	5
82	Monitoring Urban Landscape Dynamics Over Delhi (India) Using Remote Sensing (1998–2011) Inputs. Journal of the Indian Society of Remote Sensing, 2013, 41, 641-650.	1.2	66
83	Spatio-temporal footprints of urbanisation in Surat, the Diamond City of India (1990–2009). Environmental Monitoring and Assessment, 2013, 185, 3313-3325.	1.3	32
84	Evaluation of vertical accuracy of open source Digital Elevation Model (DEM). International Journal of Applied Earth Observation and Geoinformation, 2013, 21, 205-217.	1.4	258
85	Assessing biome boundary shifts under climate change scenarios in India. Ecological Indicators, 2013, 34, 536-547.	2.6	28
86	Decision tree approach for classification of remotely sensed satellite data using open source support. Journal of Earth System Science, 2013, 122, 1237-1247.	0.6	58
87	Analysing spatio-temporal footprints of urbanization on environment of Surat city using satellite-derived bio-physical parameters. Geocarto International, 2013, 28, 420-438.	1.7	20
88	Modeling spatio-temporal change patterns of forest cover: a case study from the Himalayan foothills (India). Regional Environmental Change, 2012, 12, 619-632.	1.4	38
89	Snow cover variation and streamflow simulation in a snow-fed river basin of the Northwest Himalaya. Journal of Mountain Science, 2012, 9, 853-868.	0.8	45
90	Assessing impact of climate change on forest cover type shifts in Western Himalayan Eco-region. Journal of Forestry Research, 2012, 23, 75-80.	1.7	35

Pawan Kumar Joshi

#	Article	IF	CITATIONS
91	Assessing impact of forest landscape dynamics on migratory corridors: a case study of two protected areas in Himalayan foothills. Biodiversity and Conservation, 2011, 20, 3393-3411.	1.2	20
92	National Forest Policy in India: Critique of Targets and Implementation. Small-Scale Forestry, 2011, 10, 83-96.	0.7	35
93	Decision tree classification of land use land cover for Delhi, India using IRS-P6 AWiFS data. Expert Systems With Applications, 2011, 38, 5577-5583.	4.4	58
94	A landscape approach for quantifying land-use and land-cover change (1976–2006) in middle Himalaya. Regional Environmental Change, 2010, 10, 145-155.	1.4	81
95	Landscape characterisation of the forests of Himalayan foothills. Journal of the Indian Society of Remote Sensing, 2010, 38, 441-452.	1.2	17
96	Landscape approach for quantifying land use land cover change (1972–2006) and habitat diversity in a mining area in Central India (Bokaro, Jharkhand). Environmental Monitoring and Assessment, 2010, 170, 215-229.	1.3	59
97	Assessing impact of industrialization in terms of LULC in a dry tropical region (Chhattisgarh), India using remote sensing data and GIS over a period of 30 years. Environmental Monitoring and Assessment, 2009, 149, 371-376.	1.3	14
98	Assessment of large-scale deforestation of Nawarangpur district, Orissa, India: a remote sensing based study. Environmental Monitoring and Assessment, 2009, 154, 325-335.	1.3	29
99	Development of tiger habitat suitability model using geospatial tools—a case study in Achankmar Wildlife Sanctuary (AMWLS), Chhattisgarh India. Environmental Monitoring and Assessment, 2009, 155, 555-567.	1.3	8
100	Assessing forest fragmentation in northeastern region (NER) of India using landscape matrices. Ecological Indicators, 2008, 8, 657-663.	2.6	49
101	Spectral evaluation of vegetation features using multiâ€satellite sensor system (Terra ASTER, Landsat) Tj ETQq1	1 0.7843 1.0	14 rgBT /Ove
102	Biodiversity Characterization in Nubra Valley, Ladakh with Special Reference to Plant Resource Conservation and Bioprospecting. Biodiversity and Conservation, 2006, 15, 4253-4270.	1.2	17
103	Assessing areas deforested by coal mining activities through satellite remote sensing images and gis in parts of Korba, Chattisgarh. Journal of the Indian Society of Remote Sensing, 2006, 34, 415-421.	1.2	24
104	Biome mapping in India using vegetation type map derived using temporal satellite data and environmental parameters. Ecological Modelling, 2006, 197, 148-158.	1.2	33
105	Land cover dynamics in Garhwal Himalayas — a case study of balkhila sub-watershed. Journal of the Indian Society of Remote Sensing, 2004, 32, 199-208.	1.2	18
106	Forest cover assessment in north-east Indiathe potential of temporal wide swath satellite sensor data (IRS-1C WiFS). International Journal of Remote Sensing, 2002, 23, 4881-4896.	1.3	56
107	Landscape dynamics in Hokersar Wetland, Jammu & Kashmir—An application of geospatial approach. Journal of the Indian Society of Remote Sensing, 2002, 30, 1-5.	1.2	17
108	Influence of socio-environmental risks on natural resource dependent socio-ecological systems in Central Himalaya. Human and Ecological Risk Assessment (HERA), 0, , 1-20.	1.7	0