Stefano O Casalotti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5414050/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pharmacological targeting of the GABA _B receptor alters <i>Drosophila's</i> behavioural responses to alcohol. Addiction Biology, 2020, 25, e12725.	2.6	15
2	Jigsaw Recovery: The Spatio-temporalities of Alcohol Abuse and Recovery in a Non-interventionist, Peer-led Service. Alcoholism Treatment Quarterly, 2020, 38, 165-183.	0.8	0
3	G-protein αq gene expression plays a role in alcohol tolerance in Drosophila melanogaster. Brain and Neuroscience Advances, 2019, 3, 239821281988308.	3.4	3
4	Naltrexone Reverses Ethanol Preference and Protein Kinase C Activation in Drosophila melanogaster. Frontiers in Physiology, 2018, 9, 175.	2.8	8
5	β3-integrin is required for differentiation in OC-2 cells derived from mammalian embryonic inner ear. BMC Cell Biology, 2012, 13, 5.	3.0	6
6	Amphetamine and pseudoephedrine cross-tolerance measured by c-Fos protein expression in brains of chronically treated rats. BMC Neuroscience, 2008, 9, 99.	1.9	8
7	The existence of opioid receptors in the cochlea of guinea pigs. European Journal of Neuroscience, 2006, 23, 2701-2711.	2.6	24
8	Relationship of opioid receptors with GABAergic neurons in the rat inferior colliculus. European Journal of Neuroscience, 2006, 24, 1987-1994.	2.6	17
9	Opioid modulation of GABA release in the rat inferior colliculus. BMC Neuroscience, 2004, 5, 31.	1.9	22
10	Gap junctions in the inner ear: Comparison of distribution patterns in different vertebrates and assessement of connexin composition in mammals. Journal of Comparative Neurology, 2003, 467, 207-231.	1.6	239
11	The Inner Ear Contains Heteromeric Channels Composed of Cx26 and Cx30 and Deafness-Related Mutations in Cx26 Have a Dominant Negative Effect on Cx30. Cell Communication and Adhesion, 2003, 10, 341-346.	1.0	60
12	The opioid receptors in inner ear of different stages of postnatal rats. Hearing Research, 2003, 184, 1-10.	2.0	16
13	The presence of opioid receptors in rat inner ear. Hearing Research, 2003, 181, 85-93.	2.0	49
14	Mutations in the gene for connexin 26 (GJB2) that cause hearing loss have a dominant negative effect on connexin 30. Human Molecular Genetics, 2003, 12, 805-812.	2.9	150
15	Postnatal Touch Stimulation Acutely Alters Corticosterone Levels and Glucocorticoid Receptor Gene Expression in the Neonatal Rat. Developmental Neuroscience, 2003, 25, 26-33.	2.0	65
16	Connexins and Gap Junctions in the Inner Ear. Audiology and Neuro-Otology, 2002, 7, 141-145.	1.3	33
17	Morphine induces short-lived changes in G-protein gene expression in rat prefrontal cortex. European Journal of Pharmacology, 2001, 411, 11-16.	3.5	24
18	Stress, anxiety and peripheral benzodiazepine receptor mRNA levels in human lymphocytes. Life	4.3	19

STEFANO O CASALOTTI

#	Article	IF	CITATIONS
19	Properties of Connexin26 Gap Junctional Proteins Derived from Mutations Associated With Non-Syndromal Heriditary Deafness. Human Molecular Genetics, 1999, 8, 2369-2376.	2.9	126
20	A sugar transporter as a candidate for the outer hair cell motor. Nature Neuroscience, 1999, 2, 713-719.	14.8	52
21	Pseudoephedrine, a sympathomimetic agent, induces Fos-like immunoreactivity in rat nucleus accumbens and striatum. Neuropharmacology, 1999, 38, 1381-1387.	4.1	15
22	Gene Expressions of Opioid Receptors and G-Proteins in Pineal Glands. Biochemical and Biophysical Research Communications, 1999, 262, 775-780.	2.1	14
23	Gap Junctions and Connexin Expression in the Inner Ear. Novartis Foundation Symposium, 1999, 219, 134-156.	1.1	56
24	Dexamethasone, but not stress, induce measurable changes of mitochondrial benzodiazepine receptor mRNA levels in rats. European Journal of Pharmacology, 1997, 331, 227-235.	3.5	7
25	Ethanol alone or with dexamethasone alters the kinetics of choline acetyltransferase. European Journal of Pharmacology, 1996, 313, 69-72.	3.5	3
26	Fidia and neuroscience. Nature, 1993, 366, 399-399.	27.8	0
27	Monoclonal antibodies against a phencyclidine derivative are used to investigate protein-ligand interactions. European Journal of Pharmacology, 1993, 247, 209-213.	2.6	0
28	Structure of the rat gene encoding the mitochondrial benzodiazepine receptor. Gene, 1992, 121, 377-382.	2.2	24
29	Identification of the α3-subunit in the GABAAreceptor purified from bovine brain. FEBS Letters, 1989, 243, 358-362.	2.8	53
30	Identification of the l̂ \pm 3 subunit in the l̂ 3 -aminobutyric acidA receptor purified from bovine brain. Biochemical Society Transactions, 1989, 17, 769-770.	3.4	0
31	Antibodies as probes of the benzodiazepine receptor. Biochemical Society Transactions, 1986, 14, 347-348.	3.4	0
32	Antibodies Recognising the GABAA/Benzodiazepine Receptor Including Its Regulatory Sites. Journal of Neurochemistry, 1986, 46, 854-861.	3.9	47