List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5413782/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vascularized cancer on a chip: The effect of perfusion on growth and drug delivery of tumor spheroid. Biomaterials, 2020, 229, 119547.	5.7	201
2	Integrating perfusable vascular networks with a three-dimensional tissue in a microfluidic device. Integrative Biology (United Kingdom), 2017, 9, 506-518.	0.6	188
3	Unidirectional Transport of Kinesin-Coated Beads on Microtubules Oriented in a Microfluidic Device. Nano Letters, 2004, 4, 2265-2270.	4.5	83
4	Simultaneous and bidirectional transport of kinesinâ€coated microspheres and dyneinâ€coated microspheres on polarityâ€oriented microtubules. Biotechnology and Bioengineering, 2008, 101, 1-8.	1.7	61
5	Hybrid Nanotransport System by Biomolecular Linear Motors. Journal of Microelectromechanical Systems, 2004, 13, 612-619.	1.7	58
6	SINC-seq: correlation of transient gene expressions between nucleus and cytoplasm reflects single-cell physiology. Genome Biology, 2018, 19, 66.	3.8	50
7	Unidirectional transport of a bead on a single microtubule immobilized in a submicrometre channel. Nanotechnology, 2006, 17, 289-294.	1.3	44
8	Constant Flow-Driven Microfluidic Oscillator for Different Duty Cycles. Analytical Chemistry, 2012, 84, 1152-1156.	3.2	43
9	Colocalization of Quantum Dots by Reactive Molecules Carried by Motor Proteins on Polarized Microtubule Arrays. ACS Nano, 2013, 7, 447-455.	7.3	42
10	Engineering of vascularized 3D cell constructs to model cellular interactions through a vascular network. Biomicrofluidics, 2018, 12, 042204.	1.2	42
11	Multiple independent autonomous hydraulic oscillators driven by a common gravity head. Nature Communications, 2015, 6, 7301.	5.8	37
12	Active transport of oil droplets along oriented microtubules by kinesin molecular motors. Lab on A Chip, 2009, 9, 1694.	3.1	35
13	Microfluidic Automation Using Elastomeric Valves and Droplets: Reducing Reliance on External Controllers. Small, 2012, 8, 2925-2934.	5.2	32
14	Oxygen consumption rate of tumour spheroids during necrotic-like core formation. Analyst, The, 2020, 145, 6342-6348.	1.7	32
15	Control of molecular shuttles by designing electrical and mechanical properties of microtubules. Science Robotics, 2017, 2, .	9.9	31
16	Piezoelectric properties of microfabricated (K,Na)NbO3 thin films. Sensors and Actuators A: Physical, 2011, 171, 223-227.	2.0	28
17	Individual evaluation of DEP, EP and AC-EOF effects on λDNA molecules in a DNA concentrator. Sensors and Actuators B: Chemical, 2010, 143, 769-775.	4.0	27
18	Microfluidic oscillators with widely tunable periods. Lab on A Chip, 2013, 13, 1644.	3.1	27

#	Article	IF	CITATIONS
19	Control of microtubule trajectory within an electric field by altering surface charge density. Scientific Reports, 2015, 5, 7669.	1.6	27
20	On-chip syringe pumps for picoliter-scale liquid manipulation. Lab on A Chip, 2006, 6, 1062.	3.1	25
21	Biomolecular linear motors confined to move upon micro-patterns on glass. Journal of Micromechanics and Microengineering, 2006, 16, 1550-1554.	1.5	24
22	Versatile microfluidic total internal reflection (TIR)-based devices: Application to microbeads velocity measurement and single molecule detection with upright and inverted microscope. Lab on A Chip, 2009, 9, 244-250.	3.1	24
23	Orientation Dependence of Transverse Piezoelectric Properties of Epitaxial BaTiO ₃ Films. Japanese Journal of Applied Physics, 2010, 49, 09MA09.	0.8	20
24	Biosensing MAPs as "roadblocks†kinesin-based functional analysis of tau protein isoforms and mutants using suspended microtubules (sMTs). Lab on A Chip, 2013, 13, 3217.	3.1	20
25	A new perfusion culture method with a self-organized capillary network. PLoS ONE, 2020, 15, e0240552.	1.1	20
26	Composition Dependence of Piezoelectric Properties of Pb(Zr,Ti)O ₃ Films Prepared by Combinatorial Sputtering. Japanese Journal of Applied Physics, 2012, 51, 09LA12.	0.8	19
27	Analyzing threshold pressure limitations in microfluidic transistors for self-regulated microfluidic circuits. Applied Physics Letters, 2012, 101, 234107.	1.5	19
28	Mechanical properties of aerogel-like thin films used for MEMS. Journal of Micromechanics and Microengineering, 2004, 14, 681-686.	1.5	18
29	Design, simulation and fabrication of a total internal reflection (TIR)-based chip for highly sensitive fluorescent imaging. Journal of Micromechanics and Microengineering, 2007, 17, 1139-1146.	1.5	18
30	Metal-based piezoelectric microelectromechanical systems scanner composed of Pb(Zr, Ti)O3 thin film on titanium substrate. Microsystem Technologies, 2012, 18, 765-771.	1.2	17
31	Tug-of-war of microtubule filaments at the boundary of a kinesin- and dynein-patterned surface. Scientific Reports, 2014, 4, 5281.	1.6	17
32	Tissue culture on a chip: Developmental biology applications of selfâ€organized capillary networks in microfluidic devices. Development Growth and Differentiation, 2016, 58, 505-515.	0.6	17
33	Microphysiological systems in early stage drug development: Perspectives on current applications and future impact. Journal of Toxicological Sciences, 2021, 46, 99-114.	0.7	17
34	DNA molecule manipulation by motor proteins for analysis at the single-molecule level. Analytical and Bioanalytical Chemistry, 2008, 391, 2735-2743.	1.9	16
35	A nano-needle/microtubule composite gliding on a kinesin-coated surface for target molecule transport. Lab on A Chip, 2010, 10, 86-91.	3.1	16
36	Mechanical loading of intraluminal pressure mediates wound angiogenesis by regulating the TOCA family of F-BAR proteins. Nature Communications, 2022, 13, 2594.	5.8	16

#	Article	IF	CITATIONS
37	Sequential processing from cell lysis to protein assay on a chip enabling the optimization of an F1-ATPase single molecule assay condition. Lab on A Chip, 2009, 9, 3567.	3.1	15
38	Electrical Lysis and RNA Extraction from Single Cells Fixed by Dithiobis(succinimidyl propionate). Analytical Chemistry, 2018, 90, 12512-12518.	3.2	15
39	Simultaneous Observation of Kinesin-Driven Microtubule Motility and Binding of Adenosine Triphosphate Using Linear Zero-Mode Waveguides. ACS Nano, 2018, 12, 11975-11985.	7.3	14
40	Mesenchymal glioblastoma-induced mature de-novo vessel formation of vascular endothelial cells in a microfluidic device. Molecular Biology Reports, 2021, 48, 395-403.	1.0	14
41	Different motilities of microtubules driven by kinesin-1 and kinesin-14 motors patterned on nanopillars. Science Advances, 2020, 6, eaax7413.	4.7	13
42	Polarity orientation of microtubules utilizing a dynein-based gliding assay. Nanotechnology, 2008, 19, 125505.	1.3	12
43	Synergistic effect of ATP for RuvA–RuvB–Holliday junction DNA complex formation. Scientific Reports, 2015, 5, 18177.	1.6	12
44	On-chip microtubule gliding assay for parallel measurement of tau protein species. Lab on A Chip, 2016, 16, 1691-1697.	3.1	12
45	Evaluation of cryopreserved microtubules immobilized in microfluidic channels for a bead-assay-based transportation system. IEEE Transactions on Advanced Packaging, 2005, 28, 577-583.	1.7	11
46	Perfusable multi-scale channels fabricated by integration of nanoimprint lighography (NIL) and UV lithography (UVL). Microelectronic Engineering, 2012, 98, 58-63.	1.1	11
47	A perfusable microfluidic device with on-chip total internal reflection fluorescence microscopy (TIRFM) for in situ and real-time monitoring of live cells. Biomedical Microdevices, 2012, 14, 791-797.	1.4	11
48	Specific Transport of Target Molecules by Motor Proteins in Microfluidic Channels. ChemPhysChem, 2013, 14, 1618-1625.	1.0	10
49	Open-access and multi-directional electroosmotic flow chip for positioning heterotypic cells. Lab on A Chip, 2011, 11, 1507.	3.1	9
50	Multilayer Thin-Film Capacitor Fabricated by Radio-Frequency Magnetron Sputtering. Japanese Journal of Applied Physics, 2011, 50, 09NA01.	0.8	9
51	Three-dimensional tissue model in direct contact with an on-chip vascular bed enabled by removable membranes. Lab on A Chip, 2022, 22, 641-651.	3.1	9
52	Orientation Dependence of Shear Mode Piezoelectric Properties of Epitaxial Pb(Zrx,Ti1-x)O3Thin Films. Japanese Journal of Applied Physics, 2010, 49, 09MA07.	0.8	8
53	Dynamic formation of a microchannel array enabling kinesin-driven microtubule transport between separate compartments on a chip. Lab on A Chip, 2015, 15, 2055-2063.	3.1	8
54	Ultra-smooth glass channels for bioassay with motor proteins. Analyst, The, 2004, 129, 850.	1.7	7

#	Article	IF	CITATIONS
55	Fabrication of optically smooth, through-wafer silicon molds for PDMS total internal reflection-based devices. Microsystem Technologies, 2009, 15, 1845-1853.	1.2	7
56	High efficiency energy harvester of transferred epitaxial PZT films on stainless steel sheets. , 2010, , .		7
57	Micro fabrication of lead-free (K,Na)NbO3 piezoelectric thin films by dry etching. Micro and Nano Letters, 2012, 7, 1223-1225.	0.6	7
58	Pickâ€andâ€Place Assembly of Single Microtubules. Small, 2017, 13, 1701136.	5.2	7
59	Transport of microtubules according to the number and spacing of kinesin motors on gold nano-pillars. Nanoscale, 2019, 11, 9879-9887.	2.8	7
60	Distinct Kinetics in Electrophoretic Extraction of Cytoplasmic RNA from Single Cells. Analytical Chemistry, 2020, 92, 1485-1492.	3.2	7
61	Suspended microtubules demonstrate high sensitivity and low experimental variability in kinesin bead assay. Analyst, The, 2013, 138, 1653.	1.7	6
62	Perfusable Vascular Network with a Tissue Model in a Microfluidic Device. Journal of Visualized Experiments, 2018, , .	0.2	6
63	<i>In situ</i> velocity control of gliding microtubules with temperature monitoring by fluorescence excitation on a patterned gold thin film. Materials Research Express, 2014, 1, 045405.	0.8	5
64	Vascular network formation for a long-term spheroid culture by co-culturing endothelial cells and fibroblasts. , 2015, , .		5
65	Mathematical modeling for meshwork formation of endothelial cells in fibrin gels. Journal of Theoretical Biology, 2017, 429, 95-104.	0.8	5
66	Suppression of Stiction Force by All-Vapor Processes using HF, Ozone, and HMDS for MEMS Devices. IEEJ Transactions on Sensors and Micromachines, 2007, 127, 221-227.	0.0	4
67	Transcriptome analysis device based on liquid phase detection by fluorescently labeled nucleic acid probes. Biomedical Microdevices, 2007, 9, 869-875.	1.4	4
68	Metal-based piezoelectric MEMS scanner mirrors composed of PZT thin films on titanium substrates. , 2011, , .		4
69	Microtubule density and landing rate as parameters to analyze tau protein in the MT-kinesin "gliding― assay. Sensors and Actuators B: Chemical, 2017, 238, 954-961.	4.0	4
70	Spatial Patterning of Kinesin-1 and Dynein Motor Proteins in an In Vitro Assay using Aqueous Two-Phase Systems (ATPS). Langmuir, 2019, 35, 13003-13010.	1.6	4
71	Measuring the force of adhesion between multiple kinesins and a microtubule using the fluid force produced by microfluidic flow. Microfluidics and Nanofluidics, 2011, 11, 519-527.	1.0	3
72	Microtubule polymerization in alignment by an on-chip temperature gradient platform. Sensors and Actuators B: Chemical, 2019, 298, 126813.	4.0	3

#	Article	IF	CITATIONS
73	Biomolecular linear motors confined to move upon micropatterns on glass. , 0, , .		2
74	A dual-color Total Internal Reflection (TIR)-based chip for simultaneous detection of two fluorophores. , 2008, , .		2
75	Highly-sensitive fluorescence detection and imaging with microfabricated total internal reflection (TIR)-based devices. Journal of Micro-Nano Mechatronics, 2012, 7, 45-59.	1.0	2
76	Single-molecule fluorescence imaging of kinesin using linear zero-mode waveguides. , 2016, , .		2
77	Growth rate-dependent flexural rigidity of microtubules influences pattern formation in collective motion. Journal of Nanobiotechnology, 2021, 19, 218.	4.2	2
78	Targeted permeabilization of the cell wall and extraction of charged molecules from single cells in intact plant clusters using a focused electric field. Analyst, The, 2021, 146, 1604-1611.	1.7	2
79	On/off control of biomolecular motors in a microfluidic device. , 0, , .		1
80	Control Techniques of Kinesin-Driven Beads in Microfluidic Devices. , 0, , .		1
81	Unidirectional motion of microtubules and microspheres by Dynein motor protein. , 2007, , .		1
82	Highly-sensitive Dual-fluorescence Detection and Imaging with Integrated Dual-color Total Internal Reflection (TIR)-based Chip. , 2008, , .		1
83	Nano monorail for molecular motors: Individually manipulated microtubules for kinesin motion. , 2009, , .		1
84	Monolithic Multicolor Total Internal Reflection (TIR)-Based Chip for Highly-Sensitive Multifluorescence Detection and Imaging. , 2009, , .		1
85	A Monolithic Dual-Color Total-Internal-Reflection-Based Chip for Highly Sensitive and High-Resolution Dual-Fluorescence Imaging. Journal of Microelectromechanical Systems, 2009, 18, 1371-1381.	1.7	1
86	Fabrication and characterization of multiple nanowires using microtubule structures. , 2009, , .		1
87	Biomotor-based nanotransport system constructed by pick-and-place assembly of individual molecules. , 2010, , .		1
88	Real-time monitoring of Ca. , 2011, , .		1
89	Dual Q-dot transport on microtubule array with polarity defined by nanotracks and microtubule motility control. , 2011, , .		1
90	Motor protein motion along microtubules for molecular detection. , 2011, , .		1

RYUJI YOKOKAWA

#	Article	IF	CITATIONS
91	Detection of mutations in the binding domain of tau protein by kinesin-microtubule gliding assay. , 2014, , .		1
92	Linear zero mode waveguides for the study of chemo-mechanical coupling mechanism of kinesin. , 2017, , .		1
93	The Cooperative Motility of Microtubules on Nano-Patterned Kinesin-1 Turf. , 2019, , .		1
94	Engineering a Perfusable Vascular Network in a Microfluidic Device for a Morphological Analysis. IEEJ Transactions on Sensors and Micromachines, 2018, 138, 275-280.	0.0	1
95	Evaluation of Trans-epithelial Electrical Resistance by Removal and Replenishment of Extracellular Ca ²⁺ . IEEJ Transactions on Sensors and Micromachines, 2022, 142, 21-28.	0.0	1
96	Beads actuation with kinesin on a microtubule immobilized in a nano fluidic channel. , 0, , .		0
97	A Total Internal Reflection (TIR)-Based Chip for Ultra-Sensitive Fluorescent Sensing. , 2007, , .		0
98	Application of an Integrated Microfluidic Total Internal Reflection (TIR)-based Chip to Nano-Particle Image Velocimetry (nano-PIV). , 2007, , .		0
99	Direct Liquid Manipulation by Parallel Micro Syringe System for High Controllability with Pico-Liter Scale. , 2007, , .		Ο
100	Bidirectional transport of kinesin or dynein-coated microspheres on polar oriented microtubules. Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), 2008, , .	0.0	0
101	Single DNA molecule manipulation by a self-assembled motor protein system. Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), 2008, , .	0.0	0
102	All PDMS multi-color total internal reflection (TIR)-based devices for multi-fluorescence detection and imaging. , 2009, , .		0
103	A cell lysis and protein purification–single molecule assay devices for evaluation of genetically engineered proteins. Electronics and Communications in Japan, 2009, 92, 20-30.	0.3	0
104	Polarity orientation of microtubules and its applications with motor proteins. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2010, 1, 045002.	0.7	0
105	Shear piezoelectric coefficient d <inf>15</inf> of c-axis oriented epitaxial Pb(Zr,Ti)O <inf>3</inf> films. , 2011, , .		0
106	Selective kinesin and dynein immobilizaton and electrical microtubule manipulation for bidirectional microtubule motility. , 2011, , .		0
107	Number of kinesin molecules involved in a bead transport measured by microfluidics and mechanical modeling. , 2011, , .		0
	1M1548 P46 Single-molecule visualization of a AAA^+ DNA recombination ATPase with zero-mode		

108 IM1548 P46 Single-molecule visualization of a AAA[^] + DNA recombination ATPase with zero-mode 108 waveguides toward elucidation of its hexamer formation(Molecular motor 2,The 49th Annual) Tj ETQq0 0 0 rgBT /@værlock 1@Tf 50 57 1

#	Article	IF	CITATIONS
109	Multilayer thin-film capacitors fabricated by radio-frequency magnetron sputtering. , 2011, , .		Ο
110	Manipulation and observation of binding of molecules driven by motor proteins. , 2012, , .		0
111	Characterization of SRA-Methylated DNA Complexes Dynamics Related to Chromatin Structure Regulation. Biophysical Journal, 2013, 104, 255a.	0.2	0
112	Microfabrication of lead-free (K, Na)NbO <inf>3</inf> piezoelectric thin films by dry etching. , 2013, , .		0
113	Motor protein based tau protein detection device. , 2013, , .		Ο
114	The influence of molecular charges on microtubule curvatures in an electrical field. , 2013, , .		0
115	2P119 Single-molecule visualization of RuvB oligomer for characterizing a AAA^+ class hexameric ATPase with zero-mode waveguides(04. Nucleic acid binding proteins,Poster). Seibutsu Butsuri, 2013, 53, S178.	0.0	0
116	Transition of Q-dot distribution on microtubule array enclosed by PDMS sealing for axonal transport model. , 2014, , .		0
117	Optical velocity control of microtubules driven by kinesin motors. , 2014, , .		0
118	Single-Molecule Visualization of Ruvb Origomer for Charactorizing a AAA+ Class Hexameric Atpase with Zero-Mode Waveguides. Biophysical Journal, 2014, 106, 690a.	0.2	0
119	Microtubule sortiing within a given electric field by designing flexural rigidity. , 2015, , .		Ο
120	On-chip detection of wild 3R, 4R and mutant 4R tau through kinesin-microtubule binding. , 2015, , .		0
121	A method for controlling microtubule velocity using light irradiance on a patterned gold surface. , 2015, , .		0
122	Kinesin beads assay in micro channels toward molecular manipulation directly driven by motor proteins. , 2015, , .		0
123	Controlling Gliding Trajectories of Microtubules by Altering Microtubule Flexural Rigidity. Biophysical Journal, 2016, 110, 504a.	0.2	Ο
124	Nano-patterning of motor proteins to control number of kinesin molecules transporting a single microtubule. , 2017, , .		0
125	Engineering a three-dimensional tissue model with a perfusable vasculature in a microfluidic device. , 2017, , .		0
126	Microtubule Sorting by Persistence Length and Surface Charge Density of Microtubules. Biophysical Journal, 2017, 112, 565a.	0.2	0

#	Article	IF	CITATIONS
127	Single Molecule Manipulation: Pick-and-Place Assembly of Single Microtubules (Small 32/2017). Small, 2017, 13, .	5.2	0
128	Development of three-dimensional tumor model with a perfusable vasculature using a microfluidic device. Mechanisms of Development, 2017, 145, S34.	1.7	0
129	Reconstitutive analyses of impacts of pericytes and blood flow on angiogenic morphogenesis using a microfluidic device. Mechanisms of Development, 2017, 145, S69.	1.7	0
130	Integration of Au nano-pillars and SAM enables protein patterning with designed spacing at single molecule level. , 2017, , .		0
131	Fluorescent observation of ATP binding in Kinesin driven microtubule gliding using nano-slits. , 2018, , \cdot		0
132	Patterning of Different Motor Proteins Using Aqueous Two-Phase System. , 2019, , .		0
133	Investigation of Collisions of Microtubules Driven by Nano-Patterned Kinesins. Biophysical Journal, 2019, 116, 309a.	0.2	0
134	Flexural Rigidity of Microtubules Measured with Nanometer-Level Localization Precision. Biophysical Journal, 2019, 116, 408a.	0.2	0
135	A Cell Lysis and Protein Purification - Single Molecule Assay Devices for Evaluation of Genetically Engineered Proteins. IEEJ Transactions on Sensors and Micromachines, 2008, 128, 167-175.	0.0	0
136	J0207-2-1 Heterotypic cell positioning using electroosmotic flow and observation of cell-cell interactions. The Proceedings of the JSME Annual Meeting, 2010, 2010.6, 239-240.	0.0	0
137	T1601-1-4 Fabrication of piezoelectric cantilever-shaped actuators with lead-free KNbO_3-NaNbO_3 thin films. The Proceedings of the JSME Annual Meeting, 2010, 2010.8, 193-194.	0.0	0
138	J0207-1-6 Bi-directional transport of motor protein by electrophoresis. The Proceedings of the JSME Annual Meeting, 2010, 2010.6, 135-136.	0.0	0
139	D-2-1 Fabrication of Sub-micrometer Channels for Bio-assay Perfusion Device by Integrating Nanoimprint Lithography and UV Lithography. The Proceedings of the Conference on Information Intelligence and Precision Equipment IIP, 2011, 2011, 28-29.	0.0	0
140	Fabrication of a Perfusable Glass Microfluidic Channel for Microtubule Manipulation using an Electric Field. IEEJ Transactions on Sensors and Micromachines, 2014, 134, 64-69.	0.0	0
141	25 Years for integrating Micromachines and Biomaterials. Journal of the Institute of Electrical Engineers of Japan, 2014, 134, 288-288.	0.0	0
142	J0540101 Purity of cytoplasmic RNA extracted from single cells via electrical lysis and isotachophoresis. The Proceedings of Mechanical Engineering Congress Japan, 2015, 2015, _J0540101–_J0540101	0.0	0
143	W221002 Integration of Micro/Nano Fabrications and Biophysics. The Proceedings of Mechanical Engineering Congress Japan, 2015, 2015, _W221002-1W221002-2.	0.0	0
144	Extraction efficiency of RNA at single cell level via microfluidic isotachophoresis. The Proceedings of Mechanical Engineering Congress Japan, 2016, 2016, J0540301.	0.0	0

#	Article	IF	CITATIONS
145	Dynamic Microfluidic Channels for Active Nanotransport Driven by Kinesin Motor Proteins. , 2016, , .		0
146	Pneumatically-driven Microfluidic Device for Evaluating Active Transport by Kinesin Motor Protein. IEEJ Transactions on Sensors and Micromachines, 2016, 136, 384-389.	0.0	0
147	Velocity Control of Microtubules with High Spatial Resolution on an Au-coated Surface with an SU-8 Thermal Isolation Layer. IEEJ Transactions on Sensors and Micromachines, 2016, 136, 77-82.	0.0	0
148	Design and Fabrication of Linear-shaped Zero Mode Waveguides for Single Molecule Observation of Kinesin and Fluorescent ATP. IEEJ Transactions on Sensors and Micromachines, 2017, 137, 159-164.	0.0	0
149	Preface to the Special Issue on "World State-of-the-art Research on Sensors and Micromachines― IEEJ Transactions on Sensors and Micromachines, 2017, 137, 1-1.	0.0	0
150	Preface to the Special Issue on "Selected papers in The Technical Meetings on Sensors and Micromachines 2016â€: IEEJ Transactions on Sensors and Micromachines, 2017, 137, 123-123.	0.0	0
151	Numerical analyses on single-cell electroporation and RNA extraction under focused electric field. The Proceedings of Mechanical Engineering Congress Japan, 2018, 2018, J0530202.	0.0	0
152	Isotachophoresis-based RNA extraction from fixed single cells. The Proceedings of the Symposium on Micro-Nano Science and Technology, 2018, 2018.9, 30am3PN37.	0.0	0
153	Preface to the Special Issue on "The Awarded Papers of The 34th Sensor Symposium― IEEJ Transactions on Sensors and Micromachines, 2018, 138, 268-269.	0.0	0
154	Characterization of Microtubules Cliding on Surfaces Roughness Structure. IEEJ Transactions on Sensors and Micromachines, 2018, 138, 503-508.	0.0	0
155	Dynamics of RNA in single cells under focused electric field. The Proceedings of Mechanical Engineering Congress Japan, 2019, 2019, J22109.	0.0	0
156	Length bias-free extraction of cytoplasmic RNA from single cells by electrical lysis and electrophoresis. , 2019, , .		0
157	Nano-systems Driven by Motor Proteins. Journal of the Institute of Electrical Engineers of Japan, 2020, 140, 585-587.	0.0	0
158	Flexural Rigidity of Microtubules Measured by Gold Stripe-Patterned Substrate. , 2020, , .		0
159	On-Chip Compartmentalized Vascular Bed Preserves Kidney Organoid Differentiation. , 2022, , .		0
160	Linear-Zero Mode Waveguides for Single-Molecule Fluorescence Observation of Nucleotides in Kinesin-Microtubule Motility Assay. Methods in Molecular Biology, 2022, 2430, 121-131.	0.4	0
161	Design of Mechanical and Electrical Properties for Multidirectional Control of Microtubules. Methods in Molecular Biology, 2022, 2430, 105-119.	0.4	0