Pierre Gonczy

List of Publications by Citations

Source: https://exaly.com/author-pdf/5413509/pierre-gonczy-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

112 8,983 51 94 g-index

127 10,336 12 6.43 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
112	Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III. <i>Nature</i> , 2000 , 408, 331-6	50.4	753
111	Polarity controls forces governing asymmetric spindle positioning in the Caenorhabditis elegans embryo. <i>Nature</i> , 2001 , 409, 630-3	50.4	409
110	Mechanisms of asymmetric cell division: flies and worms pave the way. <i>Nature Reviews Molecular Cell Biology</i> , 2008 , 9, 355-66	48.7	403
109	Cytoplasmic dynein is required for distinct aspects of MTOC positioning, including centrosome separation, in the one cell stage Caenorhabditis elegans embryo. <i>Journal of Cell Biology</i> , 1999 , 147, 135	- ₹ 0³	362
108	CYK-4: A Rho family gtpase activating protein (GAP) required for central spindle formation and cytokinesis. <i>Journal of Cell Biology</i> , 2000 , 149, 1391-404	7.3	309
107	SAS-6 defines a protein family required for centrosome duplication in C. elegans and in human cells. <i>Nature Cell Biology</i> , 2005 , 7, 115-25	23.4	305
106	Regulated HsSAS-6 levels ensure formation of a single procentriole per centriole during the centrosome duplication cycle. <i>Developmental Cell</i> , 2007 , 13, 203-13	10.2	268
105	Structural basis of the 9-fold symmetry of centrioles. <i>Cell</i> , 2011 , 144, 364-75	56.2	263
104	Towards a molecular architecture of centriole assembly. <i>Nature Reviews Molecular Cell Biology</i> , 2012 , 13, 425-35	48.7	234
103	Translation of polarity cues into asymmetric spindle positioning in Caenorhabditis elegans embryos. <i>Science</i> , 2003 , 300, 1957-61	33.3	232
102	Coupling of cortical dynein and G alpha proteins mediates spindle positioning in Caenorhabditis elegans. <i>Nature Cell Biology</i> , 2007 , 9, 1294-302	23.4	197
101	Overly long centrioles and defective cell division upon excess of the SAS-4-related protein CPAP. <i>Current Biology</i> , 2009 , 19, 1012-8	6.3	185
100	SAS-4 is essential for centrosome duplication in C elegans and is recruited to daughter centrioles once per cell cycle. <i>Developmental Cell</i> , 2003 , 4, 431-9	10.2	180
99	The kinetically dominant assembly pathway for centrosomal asters in Caenorhabditis elegans is gamma-tubulin dependent. <i>Journal of Cell Biology</i> , 2002 , 157, 591-602	7.3	178
98	Cytoskeletal regulation by the Nedd8 ubiquitin-like protein modification pathway. <i>Science</i> , 2002 , 295, 1294-8	33.3	169
97	Sequential protein recruitment in C. elegans centriole formation. <i>Current Biology</i> , 2006 , 16, 1844-9	6.3	164
96	Cortical dynein is critical for proper spindle positioning in human cells. <i>Journal of Cell Biology</i> , 2012 , 199, 97-110	7.3	162

(2013-2004)

95	RIC-8 is required for GPR-1/2-dependent Galpha function during asymmetric division of C. elegans embryos. <i>Cell</i> , 2004 , 119, 219-30	56.2	160
94	Mechanisms of procentriole formation. <i>Trends in Cell Biology</i> , 2008 , 18, 389-96	18.3	143
93	Centrosomes and cancer: revisiting a long-standing relationship. <i>Nature Reviews Cancer</i> , 2015 , 15, 639-5	52 1.3	138
92	Dissection of cell division processes in the one cell stage Caenorhabditis elegans embryo by mutational analysis. <i>Journal of Cell Biology</i> , 1999 , 144, 927-46	7.3	138
91	Differential activation of the DNA replication checkpoint contributes to asynchrony of cell division in C. elegans embryos. <i>Current Biology</i> , 2003 , 13, 819-27	6.3	136
90	Centriolar SAS-5 is required for centrosome duplication in C. elegans. <i>Nature Cell Biology</i> , 2004 , 6, 656-6	5 4 3.4	126
89	The arithmetic of centrosome biogenesis. <i>Journal of Cell Science</i> , 2004 , 117, 1619-30	5.3	125
88	TAC-1 and ZYG-9 form a complex that promotes microtubule assembly in C. elegans embryos. <i>Current Biology</i> , 2003 , 13, 1488-98	6.3	121
87	The SCF-FBXW5 E3-ubiquitin ligase is regulated by PLK4 and targets HsSAS-6 to control centrosome duplication. <i>Nature Cell Biology</i> , 2011 , 13, 1004-9	23.4	120
86	Mechanisms of spindle positioning: cortical force generators in the limelight. <i>Current Opinion in Cell Biology</i> , 2013 , 25, 741-8	9	117
85	Zyg-11 and cul-2 regulate progression through meiosis II and polarity establishment in C. elegans. <i>Development (Cambridge)</i> , 2004 , 131, 3527-43	6.6	102
84	Polarity establishment, asymmetric division and segregation of fate determinants in early C. elegans embryos. <i>WormBook</i> , 2014 , 1-43		99
83	Native architecture of the centriole proximal region reveals features underlying its 9-fold radial symmetry. <i>Current Biology</i> , 2013 , 23, 1620-8	6.3	92
82	Spindle positioning in human cells relies on proper centriole formation and on the microcephaly proteins CPAP and STIL. <i>Journal of Cell Science</i> , 2011 , 124, 3884-93	5.3	88
81	Simple buffers for 3D STORM microscopy. <i>Biomedical Optics Express</i> , 2013 , 4, 885-99	3.5	82
80	zyg-8, a gene required for spindle positioning in C. elegans, encodes a doublecortin-related kinase that promotes microtubule assembly. <i>Developmental Cell</i> , 2001 , 1, 363-75	10.2	80
79	Mechanisms of spindle positioning: focus on flies and worms. <i>Trends in Cell Biology</i> , 2002 , 12, 332-9	18.3	79
78	Selective chemical crosslinking reveals a Cep57-Cep63-Cep152 centrosomal complex. <i>Current Biology</i> , 2013 , 23, 265-70	6.3	78

77	Microfluidic Devices: Integrated Microfluidic Device for Drug Studies of Early C. Elegans Embryogenesis (Adv. Sci. 5/2018). <i>Advanced Science</i> , 2018 , 5, 1870032	13.6	78
76	Cartwheel architecture of Trichonympha basal body. <i>Science</i> , 2012 , 337, 553	33.3	76
75	Coupling the cell cycle to development. <i>Development (Cambridge)</i> , 2009 , 136, 2861-72	6.6	73
74	High-speed photothermal off-resonance atomic force microscopy reveals assembly routes of centriolar scaffold protein SAS-6. <i>Nature Nanotechnology</i> , 2018 , 13, 696-701	28.7	71
73	NuMA phosphorylation by CDK1 couples mitotic progression with cortical dynein function. <i>EMBO Journal</i> , 2013 , 32, 2517-29	13	70
7 ²	Centrosomes promote timely mitotic entry in C. elegans embryos. <i>Developmental Cell</i> , 2007 , 12, 531-41	10.2	69
71	Centriole Biogenesis: From Identifying the Characters to Understanding the Plot. <i>Annual Review of Cell and Developmental Biology</i> , 2017 , 33, 23-49	12.6	64
70	Cortical localization of the Galpha protein GPA-16 requires RIC-8 function during C. elegans asymmetric cell division. <i>Development (Cambridge)</i> , 2005 , 132, 4449-59	6.6	64
69	Discovering regulators of centriole biogenesis through siRNA-based functional genomics in human cells. <i>Developmental Cell</i> , 2013 , 25, 555-71	10.2	61
68	Centriolar CPAP/SAS-4 Imparts Slow Processive Microtubule Growth. <i>Developmental Cell</i> , 2016 , 37, 362	-3762	60
67	Mechanisms of HsSAS-6 assembly promoting centriole formation in human cells. <i>Journal of Cell Biology</i> , 2014 , 204, 697-712	7.3	59
66	SAS-6 engineering reveals interdependence between cartwheel and microtubules in determining centriole architecture. <i>Nature Cell Biology</i> , 2016 , 18, 393-403	23.4	55
65	A missense mutation in the PISA domain of HsSAS-6 causes autosomal recessive primary microcephaly in a large consanguineous Pakistani family. <i>Human Molecular Genetics</i> , 2014 , 23, 5940-9	5.6	55
64	PLK-1 asymmetry contributes to asynchronous cell division of C. elegans embryos. <i>Development</i> (Cambridge), 2008 , 135, 1303-13	6.6	55
63	MISP is a novel Plk1 substrate required for proper spindle orientation and mitotic progression. Journal of Cell Biology, 2013 , 200, 773-87	7.3	51
62	lis-1 is required for dynein-dependent cell division processes in C. elegans embryos. <i>Journal of Cell Science</i> , 2004 , 117, 4571-82	5.3	51
61	Analysis of centriole elimination during C. elegans oogenesis. <i>Development (Cambridge)</i> , 2012 , 139, 167	0696	50
60	KAT2A/KAT2B-targeted acetylome reveals a role for PLK4 acetylation in preventing centrosome amplification. <i>Nature Communications</i> , 2016 , 7, 13227	17.4	49

(2017-2014)

59	NuMA interacts with phosphoinositides and links the mitotic spindle with the plasma membrane. EMBO Journal, 2014 , 33, 1815-30	13	49	
58	Phosphorylation of SAS-6 by ZYG-1 is critical for centriole formation in C. elegans embryos. Developmental Cell, 2009, 17, 900-7	10.2	49	
57	Centrosome duplication and nematodes: recent insights from an old relationship. <i>Developmental Cell</i> , 2005 , 9, 317-25	10.2	46	
5€	Multicolor single-particle reconstruction of protein complexes. <i>Nature Methods</i> , 2018 , 15, 777-780	21.6	46	
55	Regulation of cortical contractility and spindle positioning by the protein phosphatase 6 PPH-6 in one-cell stage C. elegans embryos. <i>Development (Cambridge)</i> , 2010 , 137, 237-47	6.6	45	
5∠	Caenorhabditis elegans centriolar protein SAS-6 forms a spiral that is consistent with imparting a ninefold symmetry. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 11373-8	11.5	44	
53	Identification of Chlamydomonas Central Core Centriolar Proteins Reveals a Role for Human WDR90 in Ciliogenesis. <i>Current Biology</i> , 2017 , 27, 2486-2498.e6	6.3	42	
52	Cortical domains and the mechanisms of asymmetric cell division. <i>Trends in Cell Biology</i> , 1996 , 6, 382-7	18.3	42	
51	PP2A phosphatase acts upon SAS-5 to ensure centriole formation in C. elegans embryos. Developmental Cell, 2011 , 20, 550-62	10.2	41	
50	Centriole assembly at a glance. <i>Journal of Cell Science</i> , 2019 , 132,	5.3	39	
49	Discovery of a Selective Aurora A Kinase Inhibitor by Virtual Screening. <i>Journal of Medicinal Chemistry</i> , 2016 , 59, 7188-211	8.3	38	
48	Aurora A kinase regulates proper spindle positioning in C. elegans and in human cells. <i>Journal of Cell Science</i> , 2016 , 129, 3015-25	5-3	36	
47	The Rise of the Cartwheel: Seeding the Centriole Organelle. <i>BioEssays</i> , 2018 , 40, e1700241	4.1	35	
40	Distinct mechanisms eliminate mother and daughter centrioles in meiosis of starfish oocytes. Journal of Cell Biology, 2016 , 212, 815-27	7-3	34	
45	Correlative multicolor 3D SIM and STORM microscopy. <i>Biomedical Optics Express</i> , 2014 , 5, 3326-36	3.5	33	
44	Dynein Transmits Polarized Actomyosin Cortical Flows to Promote Centrosome Separation. <i>Cell Reports</i> , 2016 , 14, 2250-2262	10.6	30	
43	The Caenorhabditis elegans protein SAS-5 forms large oligomeric assemblies critical for centriole formation. <i>ELife</i> , 2015 , 4, e07410	8.9	30	
42	Zika virus causes supernumerary foci with centriolar proteins and impaired spindle positioning. Open Biology, 2017 , 7,	7	27	

41	Aurora A depletion reveals centrosome-independent polarization mechanism in. ELife, 2019, 8,	8.9	25
40	Stereotyped distribution of midbody remnants in early C. elegans embryos requires cell death genes and is dispensable for development. <i>Cell Research</i> , 2014 , 24, 251-3	24.7	22
39	Centrosomes back in the limelight. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2014 , 369,	5.8	22
38	Polarity mediates asymmetric trafficking of the Gbeta heterotrimeric G-protein subunit GPB-1 in C. elegans embryos. <i>Development (Cambridge)</i> , 2011 , 138, 2773-82	6.6	20
37	The Human Centriolar Protein CEP135 Contains a Two-Stranded Coiled-Coil Domain Critical for Microtubule Binding. <i>Structure</i> , 2016 , 24, 1358-1371	5.2	20
36	Paternally contributed centrioles exhibit exceptional persistence in C. elegans embryos. <i>Cell Research</i> , 2015 , 25, 642-4	24.7	18
35	Homogeneous multifocal excitation for high-throughput super-resolution imaging. <i>Nature Methods</i> , 2020 , 17, 726-733	21.6	18
34	Centrosomes: hooked on the nucleus. <i>Current Biology</i> , 2004 , 14, R268-70	6.3	16
33	Novel features of centriole polarity and cartwheel stacking revealed by cryo-tomography. <i>EMBO Journal</i> , 2020 , 39, e106249	13	16
32	Tissue- and sex-specific small RNAomes reveal sex differences in response to the environment. <i>PLoS Genetics</i> , 2019 , 15, e1007905	6	13
31	Structural determinants underlying the temperature-sensitive nature of a Galpha mutant in asymmetric cell division of Caenorhabditis elegans. <i>Journal of Biological Chemistry</i> , 2008 , 283, 21550-8	5.4	13
30	Nuclear envelope: torn apart at mitosis. <i>Current Biology</i> , 2002 , 12, R242-4	6.3	12
29	Computational support for a scaffolding mechanism of centriole assembly. <i>Scientific Reports</i> , 2016 , 6, 27075	4.9	10
28	Clathrin regulates centrosome positioning by promoting acto-myosin cortical tension in C. elegans embryos. <i>Development (Cambridge)</i> , 2014 , 141, 2712-23	6.6	10
27	Integrated Microfluidic Device for Drug Studies of Early Embryogenesis. Advanced Science, 2018, 5, 170	0756	9
26	PI(4,5)P forms dynamic cortical structures and directs actin distribution as well as polarity in embryos. <i>Development (Cambridge)</i> , 2018 , 145,	6.6	9
25	Multiciliogenesis: multicilin directs transcriptional activation of centriole formation. <i>Current Biology</i> , 2014 , 24, R746-9	6.3	9
24	Quantitative analysis and modeling probe polarity establishment in C. elegans embryos. <i>Biophysical Journal</i> , 2015 , 108, 799-809	2.9	9

23	SAS-1 is a C2 domain protein critical for centriole integrity in C. elegans. <i>PLoS Genetics</i> , 2014 , 10, e10047	787	9
22	Commercial Cdk1 antibodies recognize the centrosomal protein Cep152. <i>BioTechniques</i> , 2013 , 55, 111-4	2.5	8
21	Mutual antagonism between the anaphase promoting complex and the spindle assembly checkpoint contributes to mitotic timing in Caenorhabditis elegans. <i>Genetics</i> , 2010 , 186, 1271-83	4	7
20	Computer simulations reveal mechanisms that organize nuclear dynein forces to separate centrosomes. <i>Molecular Biology of the Cell</i> , 2017 , 28, 3165-3170	3.5	6
19	ASSET: a robust algorithm for the automated segmentation and standardization of early Caenorhabditis elegans embryos. <i>Developmental Dynamics</i> , 2010 , 239, 3285-96	2.9	6
18	Interaction between the centriolar protein SAS-5 and microtubules facilitates organelle assembly. <i>Molecular Biology of the Cell</i> , 2018 , 29, 722-735	3.5	5
17	TRACMIT: An effective pipeline for tracking and analyzing cells on micropatterns through mitosis. <i>PLoS ONE</i> , 2017 , 12, e0179752	3.7	5
16	Surface-catalyzed SAS-6 self-assembly directs centriole formation through kinetic and structural mecha	nisms	5
15	Isolation, cryotomography, and three-dimensional reconstruction of centrioles. <i>Methods in Cell Biology</i> , 2015 , 129, 191-209	1.8	4
14	Live imaging screen reveals that TYRO3 and GAK ensure accurate spindle positioning in human cells. <i>Nature Communications</i> , 2019 , 10, 2859	17.4	4
13	TRIM37 prevents formation of centriolar protein assemblies by regulating Centrobin. <i>ELife</i> , 2021 , 10,	8.9	4
12	Physically asymmetric division of the zygote ensures invariably successful embryogenesis. <i>ELife</i> , 2021 , 10,	8.9	4
11	Chemical Genetic Screen Identifies Natural Products that Modulate Centriole Number. <i>ChemBioChem</i> , 2016 , 17, 2063-2074	3.8	3
10	Basal body structure in Trichonympha. <i>Cilia</i> , 2016 , 5, 9	5.5	3
9	Kinetic and structural roles for the surface in guiding SAS-6 self-assembly to direct centriole architecture. <i>Nature Communications</i> , 2021 , 12, 6180	17.4	3
8	Polarity-dependent asymmetric distribution and MEX-5/6-mediated translational activation of the Era-1 mRNA in C. elegans embryos. <i>PLoS ONE</i> , 2015 , 10, e0120984	3.7	2
7	Tuning SAS-6 architecture with monobodies impairs distinct steps of centriole assembly. <i>Nature Communications</i> , 2021 , 12, 3805	17.4	2
6	Pulchelloid A, a sesquiterpene lactone from the Canadian prairie plant Gaillardia aristata inhibits mitosis in human cells. <i>Molecular Biology Reports</i> , 2021 , 48, 5459-5471	2.8	2

5	Centriole foci persist in starfish oocytes despite Polo-like kinase 1 inactivation or loss of microtubule nucleation activity. <i>Molecular Biology of the Cell</i> , 2020 , 31, 873-880	3.5	1
4	ZYG-1 promotes limited centriole amplification in the C. elegans seam lineage. <i>Developmental Biology</i> , 2018 , 434, 221-230	3.1	1
3	Structures of SAS-6 coiled coil hold implications for the polarity of the centriolar cartwheel <i>Structure</i> , 2022 ,	5.2	1
2	TRIM37: a critical orchestrator of centrosome function. <i>Cell Cycle</i> , 2021 , 20, 2443-2451	4.7	O
1	Atypical and distinct microtubule radial symmetries in the centriole and the axoneme of <i>Molecular Biology of the Cell</i> , 2022 , mbcE22040123	3.5	О