Adrianus I Aria

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5413364/publications.pdf

Version: 2024-02-01

516710 454955 35 951 16 30 citations h-index g-index papers 36 36 36 1482 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Effects of long-term exposure to the low-earth orbit environment on drag augmentation systems. Acta Astronautica, 2022, 195, 540-546.	3.2	2
2	Thermal response of multi-layer UV crosslinked PEGDA hydrogels. Polymer Degradation and Stability, 2022, 195, 109805.	5.8	7
3	Surface finishing and residual stress improvement of chemical vapour deposited tungsten carbide hard coatings by vibratory polishing. Surface and Coatings Technology, 2022, 439, 128447.	4.8	7
4	Tailoring of Thermo-Mechanical Properties of Hybrid Composite-Metal Bonded Joints. Polymers, 2021, 13, 170.	4.5	4
5	Piezoelectric Materials for Energy Harvesting and Sensing Applications: Roadmap for Future Smart Materials. Advanced Science, 2021, 8, e2100864.	11.2	259
6	TiO2-enhanced chitosan/cassava starch biofilms for sustainable food packaging. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 630, 127661.	4.7	12
7	Rapid surface finishing of chemical vapour deposited tungsten carbide hard coatings by electropolishing. Surface and Coatings Technology, 2021, 428, 127900.	4.8	4
8	Suppression of molten salt corrosion by plasma sprayed Ni3Al coatings. Emergent Materials, 2021, 4, 1583-1593.	5.7	5
9	Self-Healing Mechanisms for 3D-Printed Polymeric Structures: From Lab to Reality. Polymers, 2020, 12, 1534.	4.5	36
10	Recent Progress in Precision Machining and Surface Finishing of Tungsten Carbide Hard Composite Coatings, 2020, 10, 731.	2.6	14
11	Graphene-passivated nickel as an efficient hole-injecting electrode for large area organic semiconductor devices. Applied Physics Letters, 2020, 116, .	3.3	3
12	Compressive behavior and failure mechanisms of freestanding and composite 3D graphitic foams. Acta Materialia, 2018, 159, 187-196.	7.9	10
13	Encapsulation of graphene transistors and vertical device integration by interface engineering with atomic layer deposited oxide. 2D Materials, 2017, 4, 011008.	4.4	39
14	Bolometric detection of terahertz quantum cascade laser radiation with graphene-plasmonic antenna arrays. Journal Physics D: Applied Physics, 2017, 50, 174001.	2.8	22
15	Graphene-based nanolaminates as ultra-high permeation barriers. Npj 2D Materials and Applications, 2017, 1, .	7.9	21
16	External amplitude and frequency modulation of a terahertz quantum cascade laser using metamaterial/graphene devices. Scientific Reports, 2017, 7, 7657.	3.3	27
17	Atomic layer deposited oxide films as protective interface layers for integrated graphene transfer. Nanotechnology, 2017, 28, 485201.	2.6	18
18	From Growth Surface to Device Interface: Preserving Metallic Fe under Monolayer Hexagonal Boron Nitride. ACS Applied Materials & Samp; Interfaces, 2017, 9, 29973-29981.	8.0	16

#	Article	IF	CITATIONS
19	Chemical vapour deposition of freestanding sub-60 nm graphene gyroids. Applied Physics Letters, 2017, 111, .	3.3	18
20	Use of Vertically Aligned Carbon Nanotubes for Electrochemical Double-Layer Capacitors. , 2017, , 445-456.		0
21	Parameter Space of Atomic Layer Deposition of Ultrathin Oxides on Graphene. ACS Applied Materials & Lamp; Interfaces, 2016, 8, 30564-30575.	8.0	47
22	Time Evolution of the Wettability of Supported Graphene under Ambient Air Exposure. Journal of Physical Chemistry C, 2016, 120, 2215-2224.	3.1	108
23	Engineering high charge transfer n-doping of graphene electrodes and its application to organic electronics. Nanoscale, 2015, 7, 13135-13142.	5 . 6	43
24	Morphology engineering of hollow carbon nanotube pillars by oxygen plasma treatment. Carbon, 2015, 81, 376-387.	10.3	11
25	Fabrication of carbon nanotube—polyimide composite hollow microneedles for transdermal drug delivery. Biomedical Microdevices, 2014, 16, 879-886.	2.8	28
26	Carbon nanotube-based substrates for modulation of human pluripotent stem cell fate. Biomaterials, 2014, 35, 5098-5109.	11.4	29
27	Effect of dry oxidation on the energy gap and chemical composition of CVD graphene on nickel. Applied Surface Science, 2014, 293, 1-11.	6.1	25
28	Physicochemical Characteristics and Droplet Impact Dynamics of Superhydrophobic Carbon Nanotube Arrays. Langmuir, 2014, 30, 6780-6790.	3 . 5	68
29	Feasibility Study of Carbon Nanotube Microneedles for Rapid Transdermal Drug Delivery. Materials Research Society Symposia Proceedings, 2013, 1569, 239-244.	0.1	2
30	Dry Oxidation and Vacuum Annealing Treatments for Tuning the Wetting Properties of Carbon Nanotube Arrays. Journal of Visualized Experiments, 2013, , .	0.3	5
31	Effect of Dry Oxidation on the Performance of Carbon Nanotube Arrays Electrochemical Capacitors. Materials Research Society Symposia Proceedings, 2012, 1407, 20.	0.1	2
32	Use of vertically-aligned carbon nanotube array to enhance the performance of electrochemical capacitors. , $2011, , .$		2
33	Reversible Tuning of the Wettability of Carbon Nanotube Arrays: The Effect of Ultraviolet/Ozone and Vacuum Pyrolysis Treatments. Langmuir, 2011, 27, 9005-9011.	3. 5	54
34	Band Gap Opening of Graphene after UV/Ozone and Oxygen Plasma Treatments. Materials Research Society Symposia Proceedings, 2011, 1284, 117.	0.1	2
35	Strain Self-Sensing Tailoring in Functionalised Carbon Nanotubes/Epoxy Nanocomposites in Response to Electrical Resistance Change Measurement. SSRN Electronic Journal, 0, , .	0.4	1