
Patrick Gallois

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5413313/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Morphological classification of plant cell deaths. Cell Death and Differentiation, 2011, 18, 1241-1246.	5.0	481
2	Metacaspases. Cell Death and Differentiation, 2011, 18, 1279-1288.	5.0	292
3	Metacaspase-8 Modulates Programmed Cell Death Induced by Ultraviolet Light and H2O2 in Arabidopsis. Journal of Biological Chemistry, 2008, 283, 774-783.	1.6	213
4	Ultraviolet-C Overexposure Induces Programmed Cell Death in Arabidopsis, Which Is Mediated by Caspase-like Activities and Which Can Be Suppressed by Caspase Inhibitors, p35 and Defender against Apoptotic Death. Journal of Biological Chemistry, 2004, 279, 779-787.	1.6	212
5	Plant programmed cell death: A common way to die. Plant Physiology and Biochemistry, 2000, 38, 647-655.	2.8	207
6	What happened to plant caspases?. Journal of Experimental Botany, 2008, 59, 491-499.	2.4	184
7	Less is better: new approaches for seedless fruit production. Trends in Biotechnology, 2000, 18, 233-242.	4.9	169
8	UV-C radiation induces apoptotic-like changes inArabidopsis thaliana. FEBS Letters, 1998, 437, 131-136.	1.3	143
9	Leaf Disk Transformation Using Agrobacterium tumefaciens-Expression of Heterologous Genes in Tobacco. , 1995, 49, 39-48.		133
10	An Arabidopsis thaliana cDNA complementing a hamster apoptosis suppressor mutant. Plant Journal, 1997, 11, 1325-1331.	2.8	112
11	The <i>Arabidopsis</i> peptide kiss of death is an inducer of programmed cell death. EMBO Journal, 2011, 30, 1173-1183.	3.5	87
12	Transformation of Sugarbeet (Beta vulgaris) byAgrobacterium tumefaciens. Journal of Experimental Botany, 1990, 41, 529-536.	2.4	86
13	Inhibition of cathepsin B by caspase-3 inhibitors blocks programmed cell death in Arabidopsis. Cell Death and Differentiation, 2016, 23, 1493-1501.	5.0	80
14	The 5? flanking region of a barley B hordein gene controls tissue and developmental specific CAT expression in tobacco plants. Plant Molecular Biology, 1988, 10, 359-366.	2.0	74
15	Classification and Nomenclature of Metacaspases and Paracaspases: No More Confusion with Caspases. Molecular Cell, 2020, 77, 927-929.	4.5	71
16	The distribution of T-DNA in the genomes of transgenic Arabidopsis and rice. FEBS Letters, 2000, 471, 161-164.	1.3	70
17	Patterns of cell death in freshwater colonial cyanobacteria during the late summer bloom. Phycologia, 2007, 46, 284-292.	0.6	62
18	Two proteases with caspaseâ€3â€like activity, cathepsin B and proteasome, antagonistically control <scp>ER</scp> â€stressâ€induced programmed cell death in Arabidopsis. New Phytologist, 2018, 218, 1143-1155.	3.5	62

PATRICK GALLOIS

#	Article	IF	CITATIONS
19	Paternally inherited transgenes are down-regulated but retain low activity during early embryogenesis in Arabidopsis. FEBS Letters, 2001, 509, 11-16.	1.3	59
20	Increases in activity of proteasome and papain-like cysteine protease in Arabidopsis autophagy mutants: back-up compensatory effect or cell-death promoting effect?. Journal of Experimental Botany, 2018, 69, 1369-1385.	2.4	55
21	Death by proteases in plants: whodunit. Physiologia Plantarum, 2005, 123, 376-385.	2.6	53
22	Endoplasmic reticulum stress-induced PCD and caspase-like activities involved. Frontiers in Plant Science, 2014, 5, 41.	1.7	47
23	Ozone-induced oxidative stress response in Arabidopsis: transcription profiling by microarray approach. Cellular and Molecular Biology Letters, 2004, 9, 829-42.	2.7	44
24	Mutations inArabidopsis thalianagenes involved in the tryptophan biosynthesis pathway affect root waving on tilted agar surfaces. Plant Journal, 1998, 16, 145-154.	2.8	41
25	pH-sensitivity of YFP provides an intracellular indicator of programmed cell death. Plant Methods, 2010, 6, 27.	1.9	39
26	An in vivo root hair assay for determining rates of apoptotic-like programmed cell death in plants. Plant Methods, 2011, 7, 45.	1.9	39
27	Accumulation and nuclear targeting of BnC24, a Brassica napus ribosomal protein corresponding to a mRNA accumulating in response to cold treatment. Plant Science, 2000, 156, 35-46.	1.7	38
28	Gene expression profiling of ozone-treated Arabidopsis abi1td insertional mutant: protein phosphatase 2C ABI1 modulates biosynthesis ratio of ABA and ethylene. Planta, 2009, 230, 1003-1017.	1.6	38
29	Purification and characterization of <i>Arabidopsis thaliana</i> oligosaccharyltransferase complexes from the native host: a protein superâ€expression system for structural studies. Plant Journal, 2018, 94, 131-145.	2.8	37
30	Transactivation of BARNASE under the AtLTP1 promoter affects the basal pole of the embryo and shoot development of the adult plant in Arabidopsis. Plant Journal, 2001, 28, 503-515.	2.8	35
31	Opportunities for manipulating the seed protein composition of wheat and barley in order to improve quality. Transgenic Research, 1994, 3, 3-12.	1.3	30
32	Predictable activation of tissue-specific expression from a single gene locus using the pOp/LhG4 transactivation system in Arabidopsis. Plant Biotechnology Journal, 2004, 3, 91-101.	4.1	25
33	Arabidopsis thaliana phytaspase: identification and peculiar properties. Functional Plant Biology, 2018, 45, 171.	1.1	19
34	Identification ofArabidopsis thaliana sequences responsive to low temperature and abscisic acid by T-DNA tagging andin-vivo gene fusion. Plant Molecular Biology Reporter, 1995, 13, 243-254.	1.0	18
35	The two cathepsin B-like proteases of <i>Arabidopsis thaliana</i> are closely related enzymes with discrete endopeptidase and carboxydipeptidase activities. Biological Chemistry, 2018, 399, 1223-1235.	1.2	16
36	Methods to Study Plant Programmed Cell Death. Methods in Molecular Biology, 2016, 1419, 145-160.	0.4	15

PATRICK GALLOIS

#	Article	IF	CITATIONS
37	A new Arabidopsis nucleic-acid-binding protein gene is highly expressed in dividing cells during development. Plant Molecular Biology, 1997, 34, 119-124.	2.0	13
38	The Structures of Barley and Wheat Prolamins and their Genes. Biochemie Und Physiologie Der Pflanzen, 1988, 183, 117-127.	0.5	10
39	Genotype-by-Genotype Interactions Modified by a Third Species in a Plant-Insect System. American Naturalist, 2007, 170, 492.	1.0	9
40	Gene rescue in plants by direct gene transfer of total genomic DNA into protoplasts. Nucleic Acids Research, 1992, 20, 3977-3982.	6.5	8
41	Use of the lacZ reporter gene as an internal control for GUS activity in microprojectile bombarded plant tissue. Plant Science, 1996, 120, 153-160.	1.7	8
42	Transcriptome analysis identifies differentially expressed genes in maize leaf tissues in response to elevated atmospheric [CO ₂]. Journal of Plant Interactions, 2018, 13, 373-379.	1.0	8
43	Programmed Cell Death Regulation by Plant Proteases with Caspase-Like Activity. , 2015, , 191-202.		7
44	Electroporation of Tobacco Leaf Protoplasts Using Plasmid DNA or Total Genomic DNA. , 1995, 55, 89-108.		5
45	Transformation in Sugar Beet (Beta vulgaris L.). Biotechnology in Agriculture and Forestry, 1993, , 147-169.	0.2	0