
## **Thomas E Dowling**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5413002/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                                   | IF                | CITATIONS                        |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------|
| 1  | The Role of Hybridization and Introgression in the Diversification of Animals. Annual Review of Ecology, Evolution, and Systematics, 1997, 28, 593-619.                                                                                                                                                   | 6.7               | 546                              |
| 2  | Evolutionary significance of introgressive hybridization in cyprinid fishes. Nature, 1993, 362, 444-446.                                                                                                                                                                                                  | 27.8              | 203                              |
| 3  | Evidence for Multiple Genetic Forms with Similar Eyeless Phenotypes in the Blind Cavefish, Astyanax mexicanus. Molecular Biology and Evolution, 2002, 19, 446-455.                                                                                                                                        | 8.9               | 165                              |
| 4  | A Conservation Plan for Native Fishes of the Lower Colorado River. BioScience, 2003, 53, 219.                                                                                                                                                                                                             | 4.9               | 124                              |
| 5  | THE EXTENT OF INTROGRESSION OUTSIDE THE CONTACT ZONE BETWEEN <i>NOTROPIS CORNUTUS</i> AND <i>NOTROPIS CHRYSOCEPHALUS</i> (TELEOSTEI: CYPRINIDAE). Evolution; International Journal of Organic Evolution, 1991, 45, 944-956.                                                                               | 2.3               | 74                               |
| 6  | EFFECTS OF INTRINSIC AND EXTRINSIC FACTORS ON POPULATION FRAGMENTATION IN THREE SPECIES OF NORTH AMERICAN MINNOWS (TELEOSTEI: CYPRINIDAE). Evolution; International Journal of Organic Evolution, 1996, 50, 1280-1292.                                                                                    | 2.3               | 70                               |
| 7  | Response of grazing snails to phosphorus enrichment of modern stromatolitic microbial communities. Freshwater Biology, 2005, 50, 1826-1835.                                                                                                                                                               | 2.4               | 60                               |
| 8  | THE ROLE OF INTROGRESSIVE HYBRIDIZATION IN THE EVOLUTION OF THE GILA ROBUSTA COMPLEX (TELEOSTEI: CYPRINIDAE). Evolution; International Journal of Organic Evolution, 2001, 55, 2028-2039.                                                                                                                 | 2.3               | 59                               |
| 9  | Neglected Taxonomy of Rare Desert Fishes: Congruent Evidence for Two Species of Leatherside Chub.<br>Systematic Biology, 2004, 53, 841-855.                                                                                                                                                               | 5.6               | 54                               |
| 10 | Variable microsatellite markers amplify across divergent lineages of cyprinid fishes (subfamily) Tj ETQq0 0 0 rgBT /                                                                                                                                                                                      | Overlock<br>1,5   | 10 Tf 50 382                     |
| 11 | DEVELOPMENT OF THE HYBRID SWARM BETWEEN PECOS PUPFISH (CYPRINODONTIDAE: <i>CYPRINODON) Tj ET<br/>ALLOZYMES AND mtDNA. Evolution; International Journal of Organic Evolution, 1996, 50, 2014-2022.</i>                                                                                                     | [Qq1 1 0.]<br>2.3 | 784314 rg <mark>8</mark> 1<br>48 |
| 12 | MITOCHONDRIAL DNA VARIATION AND EVOLUTION OF THE DEATH VALLEY PUPFISHES ( $\langle i \rangle$ CYPRINODON $\langle i \rangle$ ,)                                                                                                                                                                           | Tj_EŢQq0 (<br>2.3 | ) Q <sub>3</sub> rgBT /Ov        |
| 13 | POPULATION STRUCTURE OF THE BOTTLENOSE DOLPHIN (TURSIOPS TRUNCATUS) AS DETERMINED BY<br>RESTRICTION ENDONUCLEASE ANALYSIS OF MITOCHONDRIAL DNA. Marine Mammal Science, 1993, 9, 138-155.                                                                                                                  | 1.8               | 41                               |
| 14 | Effects of Intrinsic and Extrinsic Factors on Population Fragmentation in Three Species of North<br>American Minnows (Teleostei: Cyprinidae). Evolution; International Journal of Organic Evolution,<br>1996, 50, 1280.                                                                                   | 2.3               | 41                               |
| 15 | Use of Genetic Characters in Conservation Biology. Conservation Biology, 1992, 6, 7-8.                                                                                                                                                                                                                    | 4.7               | 39                               |
| 16 | Mitochondrial DNA Variability in the Endangered Razorback Sucker (Xyrauchen texanus): Analysis of<br>Hatchery Stocks and Implications for Captive Propagation. Conservation Biology, 1996, 10, 120-127.                                                                                                   | 4.7               | 34                               |
| 17 | Influence of Introgression and Geological Processes on Phylogenetic Relationships of Western<br>North American Mountain Suckers (Pantosteus, Catostomidae). PLoS ONE, 2014, 9, e90061.                                                                                                                    | 2.5               | 33                               |
| 18 | SIGNIFICANT ROLE FOR HISTORICAL EFFECTS IN THE EVOLUTION OF REPRODUCTIVE ISOLATION: EVIDENCE<br>FROM PATTERNS OF INTROGRESSION BETWEEN THE CYPRINID FISHES, <i>LUXILUS CORNUTUS</i> AND<br><i>LUXILUS CHRYSOCEPHALUS</i> . Evolution; International Journal of Organic Evolution, 1997, 51,<br>1574-1583. | 2.3               | 28                               |

THOMAS E DOWLING

| #  | Article                                                                                                                                                                                                     | IF               | CITATIONS         |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------|
| 19 | Long-term effective population size of three endangered Colorado River fishes. Animal Conservation, 2002, 5, 95-102.                                                                                        | 2.9              | 27                |
| 20 | Introgressive Hybridization and the Evolution of Lake-Adapted Catostomid Fishes. PLoS ONE, 2016, 11, e0149884.                                                                                              | 2.5              | 25                |
| 21 | Semi-permeable species boundaries in Iberian barbels (Barbus and Luciobarbus, Cyprinidae). BMC<br>Evolutionary Biology, 2015, 15, 111.                                                                      | 3.2              | 23                |
| 22 | Population prioritization for conservation of imperilled warmwater fishes in an aridâ€region drainage.<br>Aquatic Conservation: Marine and Freshwater Ecosystems, 2012, 22, 498-510.                        | 2.0              | 22                |
| 23 | EVIDENCE THAT AN OUTCROSSING POPULATION IS A DERIVED LINEAGE IN A HERMAPHRODITIC FISH () TJ ETQq1 1217-1225.                                                                                                | 1 0.78431<br>2.3 | l4 rgBT /O∨<br>21 |
| 24 | Timeâ€series analysis reveals genetic responses to intensive management of razorback sucker<br>( <i>Xyrauchen texanus</i> ). Evolutionary Applications, 2014, 7, 339-354.                                   | 3.1              | 21                |
| 25 | Conservation to Stem Imminent Extinction: The Fight To Save Razorback SuckerXyrauchen texanusin<br>Lake Mohave and Its Implications for Species Recovery. Copeia, 2015, 103, 141-156.                       | 1.3              | 20                |
| 26 | Wild at heart: Programs to diminish negative ecological and evolutionary effects of conservation hatcheries. Biological Conservation, 2020, 251, 108768.                                                    | 4.1              | 20                |
| 27 | Genetic structure within and among populations of the endangered razorback sucker (Xyrauchen) Tj ETQq1 1 0.7                                                                                                | 84314 rgE        | BT_{Overlock      |
| 28 | Microsatellite markers for the endangered razorback sucker, Xyrauchen texanus, are widely<br>applicable to genetic studies of other catostomine fishes. Conservation Genetics, 2009, 10, 551-553.           | 1.5              | 12                |
| 29 | Use of a Molecular Assay to Detect Predation on an Endangered Fish Species. Transactions of the<br>American Fisheries Society, 2014, 143, 49-54.                                                            | 1.4              | 12                |
| 30 | Population Structure in the Roundtail Chub (Gila robusta Complex) of the Gila River Basin as<br>Determined by Microsatellites: Evolutionary and Conservation Implications. PLoS ONE, 2015, 10,<br>e0139832. | 2.5              | 11                |
| 31 | Effective size, census size, and genetic monitoring of the endangered razorback sucker, Xyrauchen texanus. Conservation Genetics, 2007, 8, 417-425.                                                         | 1.5              | 10                |
| 32 | Conflicting Phylogenetic Patterns Caused by Molecular Mechanisms in Mitochondrial DNA Sequences.<br>Systematic Biology, 1998, 47, 696-701.                                                                  | 5.6              | 7                 |
| 33 | Genetic Variability in a Recruiting Population of Endangered Razorback Suckers from Lake Mead,<br>Arizona–Nevada. Transactions of the American Fisheries Society, 2012, 141, 990-999.                       | 1.4              | 5                 |
| 34 | Molecular Genetics Informs Spatial Segregation of Two Desert StreamGilaSpecies. Transactions of the<br>American Fisheries Society, 2017, 146, 47-59.                                                        | 1.4              | 5                 |
| 35 | Retention of Ancestral Genetic Variation Across Life-Stages of an Endangered, Long-Lived Iteroparous<br>Fish. Journal of Heredity, 2016, 107, 567-572.                                                      | 2.4              | 3                 |
| 36 | Use of Molecular Techniques to Confirm Nonnative Fish Predation on Razorback Sucker Larvae in Lake<br>Mohave, Arizona and Nevada. Transactions of the American Fisheries Society, 2017, 146, 201-205.       | 1.4              | 2                 |