List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5412769/publications.pdf Version: 2024-02-01

		4960	6300
339	30,130	84	158
papers	citations	h-index	g-index
355	355	355	39914
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Mutation nomenclature extensions and suggestions to describe complex mutations: A discussion. Human Mutation, 2000, 15, 7-12.	2.5	1,688
2	HGVS Recommendations for the Description of Sequence Variants: 2016 Update. Human Mutation, 2016, 37, 564-569.	2.5	1,194
3	LOVD v.2.0: the next generation in gene variant databases. Human Mutation, 2011, 32, 557-563.	2.5	854
4	Local Dystrophin Restoration with Antisense Oligonucleotide PRO051. New England Journal of Medicine, 2007, 357, 2677-2686.	27.0	735
5	Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms. Nucleic Acids Research, 2008, 36, e141-e141.	14.5	653
6	Whole-genome sequence variation, population structure and demographic history of the Dutch population. Nature Genetics, 2014, 46, 818-825.	21.4	641
7	Digenic inheritance of an SMCHD1 mutation and an FSHD-permissive D4Z4 allele causes facioscapulohumeral muscular dystrophy type 2. Nature Genetics, 2012, 44, 1370-1374.	21.4	582
8	Entries in the Leiden Duchenne muscular dystrophy mutation database: An overview of mutation types and paradoxical cases that confirm the reading-frame rule. Muscle and Nerve, 2006, 34, 135-144.	2.2	569
9	Next generation sequencing technology: Advances and applications. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 1932-1941.	3.8	557
10	Phenotypically Concordant and Discordant Monozygotic Twins Display Different DNA Copy-Number-Variation Profiles. American Journal of Human Genetics, 2008, 82, 763-771.	6.2	533
11	Theoretic applicability of antisense-mediated exon skipping for Duchenne muscular dystrophy mutations. Human Mutation, 2009, 30, 293-299.	2.5	485
12	Genetic Heterogeneity in Rubinstein-Taybi Syndrome: Mutations in Both the CBP and EP300 Genes Cause Disease. American Journal of Human Genetics, 2005, 76, 572-580.	6.2	416
13	High-Resolution Melting Analysis (HRMA)-More than just sequence variant screening. Human Mutation, 2009, 30, 860-866.	2.5	414
14	Application of a 5-tiered scheme for standardized classification of 2,360 unique mismatch repair gene variants in the InSiGHT locus-specific database. Nature Genetics, 2014, 46, 107-115.	21.4	410
15	The Matchmaker Exchange: A Platform for Rare Disease Gene Discovery. Human Mutation, 2015, 36, 915-921.	2.5	390
16	Improving sequence variant descriptions in mutation databases and literature using the Mutalyzer sequence variation nomenclature checker. Human Mutation, 2008, 29, 6-13.	2.5	383
17	Mutations in SWI/SNF chromatin remodeling complex gene ARID1B cause Coffin-Siris syndrome. Nature Genetics, 2012, 44, 379-380.	21.4	312
18	Loss-of-function mutations in MICU1 cause a brain and muscle disorder linked to primary alterations in mitochondrial calcium signaling. Nature Genetics, 2014, 46, 188-193.	21.4	311

#	Article	IF	CITATIONS
19	Protein truncation test (PTT) for rapid detection of translation-terminating mutations. Human Molecular Genetics, 1993, 2, 1719-1721.	2.9	307
20	Rapid detection of BRCA1 mutations by the protein truncation test. Nature Genetics, 1995, 10, 208-212.	21.4	307
21	International Cooperation to Enable the Diagnosis of All Rare Genetic Diseases. American Journal of Human Genetics, 2017, 100, 695-705.	6.2	305
22	WHSC1, a 90 kb SET Domain-Containing Gene, Expressed in Early Development and Homologous to a Drosophila Dysmorphy Gene Maps in the Wolf-Hirschhorn Syndrome Critical Region and is Fused to IgH in t(1;14) Multiple Myeloma. Human Molecular Genetics, 1998, 7, 1071-1082.	2.9	296
23	High-Resolution Whole-Genome Sequencing Reveals That Specific Chromatin Domains from Most Human Chromosomes Associate with Nucleoli. Molecular Biology of the Cell, 2010, 21, 3735-3748.	2.1	274
24	Reproducibility of high-throughput mRNA and small RNA sequencing across laboratories. Nature Biotechnology, 2013, 31, 1015-1022.	17.5	251
25	The Genome of the Netherlands: design, and project goals. European Journal of Human Genetics, 2014, 22, 221-227.	2.8	246
26	LOVD: Easy creation of a locus-specific sequence variation database using an "LSDB-in-a-box―approach. Human Mutation, 2005, 26, 63-68.	2.5	235
27	Targeted sequencing by proximity ligation for comprehensive variant detection and local haplotyping. Nature Biotechnology, 2014, 32, 1019-1025.	17.5	231
28	Prorenin Induces Intracellular Signaling in Cardiomyocytes Independently of Angiotensin II. Hypertension, 2006, 48, 564-571.	2.7	228
29	Therapeutic antisense-induced exon skipping in cultured muscle cells from six different DMD patients. Human Molecular Genetics, 2003, 12, 907-914.	2.9	226
30	Complex SNP-related sequence variation in segmental genome duplications. Nature Genetics, 2004, 36, 861-866.	21.4	220
31	Three Genome-wide Association Studies and a Linkage Analysis Identify HERC2 as a Human Iris Color Gene. American Journal of Human Genetics, 2008, 82, 411-423.	6.2	220
32	Rapid Detection of Translation-Terminating Mutations at the Adenomatous Polyposis Coli (APC) Gene by Direct Protein Truncation Test. Genomics, 1994, 20, 1-4.	2.9	218
33	Nine unknown rearrangements in 16p13.3 and 11p15.4 causing Â- and Â-thalassaemia characterised by high resolution multiplex ligation-dependent probe amplification. Journal of Medical Genetics, 2005, 42, 922-931.	3.2	213
34	Direct detection of more than 50% of the Duchenne muscular dystrophy mutations by field inversion gels. Nature, 1987, 329, 640-642.	27.8	202
35	The PWWP domain: a potential protein–protein interaction domain in nuclear proteins influencing differentiation?. FEBS Letters, 2000, 473, 1-5.	2.8	196
36	Efficient and sensitive identification and quantification of airborne pollen using nextâ€generation <scp>DNA</scp> sequencing. Molecular Ecology Resources, 2015, 15, 8-16.	4.8	192

#	Article	IF	CITATIONS
37	Germinal mosaicism increases the recurrence risk for 'new' Duchenne muscular dystrophy mutations Journal of Medical Genetics, 1989, 26, 553-559.	3.2	187
38	Antisense-Induced Multiexon Skipping for Duchenne Muscular Dystrophy Makes More Sense. American Journal of Human Genetics, 2004, 74, 83-92.	6.2	180
39	Peters Plus Syndrome Is Caused by Mutations in B3GALTL, a Putative Glycosyltransferase. American Journal of Human Genetics, 2006, 79, 562-566.	6.2	178
40	Coffin-Siris Syndrome and the BAF Complex: Genotype-Phenotype Study in 63 Patients. Human Mutation, 2013, 34, 1519-1528.	2.5	178
41	Standardizing mutation nomenclature: Why bother?. Human Mutation, 2003, 22, 181-182.	2.5	176
42	Molecular genetic analysis of familial early-onset Alzheimer's disease linked to chromosome 14q24.3. Human Molecular Genetics, 1995, 4, 2363-2371.	2.9	171
43	Deletion and duplication screening in the DMD gene using MLPA. European Journal of Human Genetics, 2005, 13, 1231-1234.	2.8	171
44	Loss-of-function mutations in IGSF1 cause an X-linked syndrome of central hypothyroidism and testicular enlargement. Nature Genetics, 2012, 44, 1375-1381.	21.4	169
45	Comprehensive Detection of Genomic Duplications and Deletions in the DMD Gene, by Use of Multiplex Amplifiable Probe Hybridization. American Journal of Human Genetics, 2002, 71, 365-374.	6.2	163
46	High-resolution DNA Fiber-FISH for genomic DNA mapping and colour bar-coding of large genes. Human Molecular Genetics, 1995, 4, 831-836.	2.9	162
47	Mutations in ZBTB24 Are Associated with Immunodeficiency, Centromeric Instability, and Facial Anomalies Syndrome Type 2. American Journal of Human Genetics, 2011, 88, 796-804.	6.2	158
48	Targeted exon skipping as a potential gene correction therapy for Duchenne muscular dystrophy. Neuromuscular Disorders, 2002, 12, S71-S77.	0.6	157
49	Phage display screening without repetitious selection rounds. Analytical Biochemistry, 2012, 421, 622-631.	2.4	149
50	Poly(A) binding protein nuclear 1 levels affect alternative polyadenylation. Nucleic Acids Research, 2012, 40, 9089-9101.	14.5	148
51	BRCA Challenge: BRCA Exchange as a global resource for variants in BRCA1 and BRCA2. PLoS Genetics, 2018, 14, e1007752.	3.5	148
52	Standard Mutation Nomenclature in Molecular Diagnostics. Journal of Molecular Diagnostics, 2007, 9, 1-6.	2.8	146
53	Pharmacogenetic allele nomenclature: International workgroup recommendations for test result reporting. Clinical Pharmacology and Therapeutics, 2016, 99, 172-185.	4.7	146
54	Duplications in theDMD gene. Human Mutation, 2006, 27, 938-945.	2.5	145

#	Article	IF	CITATIONS
55	Two-color multiplex ligation-dependent probe amplification: Detecting genomic rearrangements in hereditary multiple exostoses. Human Mutation, 2004, 24, 86-92.	2.5	142
56	Long-term persistence of donor nuclei in a Duchenne muscular dystrophy patient receiving bone marrow transplantation. Journal of Clinical Investigation, 2002, 110, 807-814.	8.2	140
57	Identification of a hot spot for microdeletions in patients with X- linked deafness type 3 (DFN3) 900 kb proximal to the DFN3 gene POU3F4. Human Molecular Genetics, 1996, 5, 1229-1235.	2.9	138
58	Improved molecular diagnosis of dystrophinopathies in an unselected clinical cohort. American Journal of Medical Genetics, Part A, 2005, 134A, 295-298.	1.2	135
59	AHNAK a novel component of the dysferlin protein complex, redistributes to the cytoplasm with dysferlin during skeletal muscle regeneration. FASEB Journal, 2007, 21, 732-742.	0.5	133
60	Genome-wide assessment of differential roles for p300 and CBP in transcription regulation. Nucleic Acids Research, 2010, 38, 5396-5408.	14.5	133
61	Serum matrix metalloproteinase-9 (MMP-9) as a biomarker for monitoring disease progression in Duchenne muscular dystrophy (DMD). Neuromuscular Disorders, 2011, 21, 569-578.	0.6	132
62	A novel Fanconi anaemia subtype associated with a dominant-negative mutation in RAD51. Nature Communications, 2015, 6, 8829.	12.8	130
63	Comparative analysis of antisense oligonucleotide analogs for targeted DMD exon 46 skipping in muscle cells. Gene Therapy, 2004, 11, 1391-1398.	4.5	126
64	The value of data. Nature Genetics, 2011, 43, 281-283.	21.4	126
65	Next-Generation Diagnostics: Gene Panel, Exome, or Whole Genome?. Human Mutation, 2015, 36, 648-655.	2.5	124
66	Skewed X-inactivation is common in the general female population. European Journal of Human Genetics, 2019, 27, 455-465.	2.8	119
67	<i>In Silico</i> Functional Meta-Analysis of 5,962 <i>ABCA4</i> Variants in 3,928 Retinal Dystrophy Cases. Human Mutation, 2017, 38, 400-408.	2.5	118
68	Calling on a million minds for community annotation in WikiProteins. Genome Biology, 2008, 9, R89.	9.6	117
69	Targeted Exon Skipping in Transgenic hDMD Mice: A Model for Direct Preclinical Screening of Human-Specific Antisense Oligonucleotides. Molecular Therapy, 2004, 10, 232-240.	8.2	111
70	Functional Analysis of 114 Exon-Internal AONs for Targeted DMD Exon Skipping: Indication for Steric Hindrance of SR Protein Binding Sites. Oligonucleotides, 2005, 15, 284-197.	2.7	108
71	An overview of L-2-hydroxyglutarate dehydrogenase gene (L2HGDH) variants: a genotype-phenotype study. Human Mutation, 2010, 31, 380-390.	2.5	108
72	Mutation Update: The Spectra of Nebulin Variants and Associated Myopathies. Human Mutation, 2014, 35, 1418-1426.	2.5	107

#	Article	IF	CITATIONS
73	Full-length mRNA sequencing uncovers a widespread coupling between transcription initiation and mRNA processing. Genome Biology, 2018, 19, 46.	8.8	106
74	Subcellular localization of the Huntington's disease gene product in cell lines by immunofluorescence and biochemical subcellular fractionation. Human Molecular Genetics, 1996, 5, 1093-1099.	2.9	103
75	Templated Insertions: A Smoking Gun for Polymerase Theta-Mediated End Joining. Trends in Genetics, 2019, 35, 632-644.	6.7	103
76	Rapid genotyping of blood group antigens by multiplex polymerase chain reaction and DNA microarray hybridization. Transfusion, 2005, 45, 667-679.	1.6	100
77	Locus Reference Genomic sequences: an improved basis for describing human DNA variants. Genome Medicine, 2010, 2, 24.	8.2	100
78	The InSiGHT database: utilizing 100Âyears of insights into Lynch Syndrome. Familial Cancer, 2013, 12, 175-180.	1.9	100
79	Nutrigenomics: The Impact of Biomics Technology on Nutrition Research. Annals of Nutrition and Metabolism, 2005, 49, 355-365.	1.9	98
80	The Effects of Low Levels of Dystrophin on Mouse Muscle Function and Pathology. PLoS ONE, 2012, 7, e31937.	2.5	96
81	Reconstruction of the 204 Mb human DMD-gene bhy homologous YAC recombination. Human Molecular Genetics, 1992, 1, 19-28.	2.9	95
82	Muscle regeneration in dystrophin-deficient mdx mice studied by gene expression profiling. BMC Genomics, 2005, 6, 98.	2.8	95
83	mRNA degradation controls differentiation state-dependent differences in transcript and splice variant abundance. Nucleic Acids Research, 2011, 39, 556-566.	14.5	95
84	Fluorescent labelling of cRNA for microarray applications. Nucleic Acids Research, 2003, 31, 20e-20.	14.5	92
85	Calpain 3 is a modulator of the dysferlin protein complex in skeletal muscle. Human Molecular Genetics, 2008, 17, 1855-1866.	2.9	89
86	Long-term persistence of donor nuclei in a Duchenne muscular dystrophy patient receiving bone marrow transplantation. Journal of Clinical Investigation, 2002, 110, 807-814.	8.2	89
87	Concerted and divergent evolution within the rat Î ³ -crystallin gene family. Journal of Molecular Biology, 1986, 189, 37-46.	4.2	88
88	Detection of mutations in the dystrophin gene via automated DHPLC screening and direct sequencing. BMC Genetics, 2001, 2, 17.	2.7	88
89	<i>Akkermansia muciniphila</i> and <i>Helicobacter typhlonius</i> modulate intestinal tumor development in mice. Carcinogenesis, 2015, 36, 1388-1396.	2.8	87
90	Distribution of Inclusions in Neuronal Nuclei and Dystrophic Neurites in Huntington Disease Brain. Journal of Neuropathology and Experimental Neurology, 1999, 58, 129-137.	1.7	85

#	Article	IF	CITATIONS
91	Dystrophin nonsense mutation induces different levels of exon 29 skipping and leads to variable phenotypes within one BMD family. European Journal of Human Genetics, 2000, 8, 793-796.	2.8	85
92	New methods for next generation sequencing based microRNA expression profiling. BMC Genomics, 2010, 11, 716.	2.8	85
93	Targeting Several CAG Expansion Diseases by a Single Antisense Oligonucleotide. PLoS ONE, 2011, 6, e24308.	2.5	85
94	Copy number variation in the genome; the human <i>DMD</i> gene as an example. Cytogenetic and Genome Research, 2006, 115, 240-246.	1.1	82
95	Recurrence risk due to germ line mosaicism: Duchenne and Becker muscular dystrophy. Clinical Genetics, 2009, 75, 465-472.	2.0	81
96	Severe Myocardial Fibrosis Caused by a Deletion of the 5' End of the Lamin A/C Gene. Journal of the American College of Cardiology, 2007, 49, 2430-2439.	2.8	79
97	Huntington's disease biomarker progression profile identified by transcriptome sequencing in peripheral blood. European Journal of Human Genetics, 2015, 23, 1349-1356.	2.8	79
98	Exploring the Frontiers of Therapeutic Exon Skipping for Duchenne Muscular Dystrophy by Double Targeting within One or Multiple Exons. Molecular Therapy, 2006, 14, 401-407.	8.2	76
99	Mitochondrial Disease Sequence Data Resource (MSeqDR): A global grass-roots consortium to facilitate deposition, curation, annotation, and integrated analysis of genomic data for the mitochondrial disease clinical and research communities. Molecular Genetics and Metabolism, 2015, 114, 388-396	1.1	76
100	The UCL low-density lipoprotein receptor gene variant database: pathogenicity update. Journal of Medical Genetics, 2017, 54, 217-223.	3.2	75
101	Large scale single nucleotide polymorphism discovery in unsequenced genomes using second generation high throughput sequencing technology: applied to turkey. BMC Genomics, 2009, 10, 479.	2.8	73
102	Functional assessment of variants in the <i>TSC1</i> and <i>TSC2</i> genes identified in individuals with Tuberous Sclerosis Complex. Human Mutation, 2011, 32, 424-435.	2.5	73
103	Integrated study of 100 patients with Xp21 linked muscular dystrophy using clinical, genetic, immunochemical, and histopathological data. Part 1. Trends across the clinical groups Journal of Medical Genetics, 1993, 30, 728-736.	3.2	72
104	Leiden open variation database of the MUTYH gene. Human Mutation, 2010, 31, 1205-1215.	2.5	72
105	Deep sequencing to reveal new variants in pooled DNA samples. Human Mutation, 2009, 30, 1703-1712.	2.5	71
106	<i>LAMA2</i> gene mutation update: Toward a more comprehensive picture of the laminin-α2 variome and its related phenotypes. Human Mutation, 2018, 39, 1314-1337.	2.5	71
107	Successful Long-Term Growth Hormone Therapy in a Girl with Haploinsufficiency of the Insulin-Like Growth Factor-I Receptor due to a Terminal 15q26.2->qter Deletion Detected by Multiplex Ligation Probe Amplification. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 2421-2425.	3.6	70
108	Autosomal Recessive Spinocerebellar Ataxia 7 (SCAR7) is Caused by Variants in <i>TPP1</i> , The Gene Involved in Classic Late-Infantile Neuronal Ceroid Lipofuscinosis 2 Disease (CLN2 Disease). Human Mutation, 2013, 34, 706-713.	2.5	70

#	Article	IF	CITATIONS
109	Recommendations for a nomenclature system for reporting methylation aberrations in imprinted domains. Epigenetics, 2018, 13, 117-121.	2.7	70
110	Characterization and cell type distribution of a novel, major transcript of the Duchenne Muscular Dystrophy gene. Differentiation, 1992, 49, 187-193.	1.9	69
111	Generation and Characterization of Transgenic Mice with the Full-length Human DMD Gene. Journal of Biological Chemistry, 2008, 283, 5899-5907.	3.4	69
112	Flexible and Scalable Full-Length CYP2D6 Long Amplicon PacBio Sequencing. Human Mutation, 2017, 38, 310-316.	2.5	69
113	Common pathological mechanisms in mouse models for muscular dystrophies. FASEB Journal, 2006, 20, 127-129.	0.5	67
114	Keratosis Follicularis Spinulosa Decalvans is caused by mutations in MBTPS2. Human Mutation, 2010, 31, 1125-1133.	2.5	67
115	Mutant huntingtin activates Nrf2-responsive genes and impairs dopamine synthesis in a PC12 model of Huntington's disease. BMC Molecular Biology, 2008, 9, 84.	3.0	66
116	Ataxin-3 protein modification as a treatment strategy for spinocerebellar ataxia type 3: Removal of the CAG containing exon. Neurobiology of Disease, 2013, 58, 49-56.	4.4	66
117	Detecting authorized and unauthorized genetically modified organisms containing vip3A by real-time PCR and next-generation sequencing. Analytical and Bioanalytical Chemistry, 2014, 406, 2603-2611.	3.7	64
118	A common reference for cDNA microarray hybridizations. Nucleic Acids Research, 2002, 30, 116e-116.	14.5	63
119	The Human Variome Project. Science, 2008, 322, 861-862.	12.6	63
120	Reliable and controllable antibody fragment selections from Camelid non-immune libraries for target validation. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2006, 1764, 1307-1319.	2.3	62
121	Relative power and sample size analysis on gene expression profiling data. BMC Genomics, 2009, 10, 439.	2.8	62
122	Increased sensitivity of next generation sequencing-based expression profiling after globin reduction in human blood RNA. BMC Genomics, 2012, 13, 28.	2.8	62
123	Somatic expansion of the (CAG) n repeat in Huntington disease brains. Human Genetics, 1995, 95, 270-274.	3.8	61
124	High resoluation deletion breakpoint mapping in the DMD gene by whole cosmid hybridization. Nucleic Acids Research, 1989, 17, 5611-5621.	14.5	60
125	242 Breakpoints in the 200-kb deletion-prone P20 region of the DMD gene are widely spread. Genomics, 1991, 10, 631-639.	2.9	60
126	Protein studies in dysferlinopathy patients using llama-derived antibody fragments selected by phage display. European Journal of Human Genetics, 2005, 13, 721-730.	2.8	60

#	Article	IF	CITATIONS
127	Copy number variation in regions flanked (or unflanked) by duplicons among patients with developmental delay and/or congenital malformations; detection of reciprocal and partial Williams-Beuren duplications. European Journal of Human Genetics, 2006, 14, 180-189.	2.8	60
128	The protein truncation test: A review. Human Mutation, 1999, 14, 95-102.	2.5	59
129	Recommendations for locus-specific databases and their curation. Human Mutation, 2008, 29, 2-5.	2.5	59
130	Array-MLPA: comprehensive detection of deletions and duplications and its application to DMD patients. Human Mutation, 2008, 29, 190-197.	2.5	58
131	Strict co-linearity of genetic and protein folding domains in an intragenically duplicated rat lens γ-crystallin gene. Journal of Molecular Biology, 1983, 171, 353-368.	4.2	57
132	Describing structural changes by extending HGVS sequence variation nomenclature. Human Mutation, 2011, 32, 507-511.	2.5	57
133	Next-generation sequencing-based genome diagnostics across clinical genetics centers: implementation choices and their effects. European Journal of Human Genetics, 2015, 23, 1142-1150.	2.8	56
134	Protein truncation test (PTT) to rapidly screen the DMD gene for translation terminating mutations. Neuromuscular Disorders, 1993, 3, 391-394.	0.6	55
135	A full-body transcriptome and proteome resource for the European common carp. BMC Genomics, 2016, 17, 701.	2.8	55
136	Integrated study of 100 patients with Xp21 linked muscular dystrophy using clinical, genetic, immunochemical, and histopathological data. Part 2. Correlations within individual patients Journal of Medical Genetics, 1993, 30, 737-744.	3.2	54
137	Dynamic mutation in Dutch Huntington's disease patients: increased paternal repeat instability extending to within the normal size range Journal of Medical Genetics, 1993, 30, 996-1002.	3.2	53
138	Becker muscular dystrophy patients with deletions around exon 51; a promising outlook for exon skipping therapy in Duchenne patients. Neuromuscular Disorders, 2010, 20, 251-254.	0.6	53
139	Two human Î ³ -crystallin genes are linked and riddled with Alu-repeats. Gene, 1985, 38, 197-204.	2.2	52
140	Mutation rates in the dystrophin gene: A hotspot of mutation at a CpG dinucleotide. Human Mutation, 2005, 25, 177-188.	2.5	52
141	Serum protein profiling in mice: Identification of Factor XIIIa as a potential biomarker for muscular dystrophy. Proteomics, 2008, 8, 1552-1563.	2.2	52
142	The LOVD3 platform: efficient genome-wide sharing of genetic variants. European Journal of Human Genetics, 2021, 29, 1796-1803.	2.8	52
143	Short hypervariable microhaplotypes: A novel set of very short high discriminating power loci without stutter artefacts. Forensic Science International: Genetics, 2018, 35, 169-175.	3.1	51
144	A novel human serine-threonine phosphatase related to the Drosophila retinal degeneration C (rdgC) gene is selectively expressed in sensory neurons of neural crest origin. Human Molecular Genetics, 1997, 6, 1137-1145.	2.9	50

#	Article	IF	CITATIONS
145	Strong aggregation and increased toxicity of polyleucine over polyglutamine stretches in mammalian cells. Human Molecular Genetics, 2002, 11, 1487-1496.	2.9	50
146	DGGE-based whole-gene mutation scanning of the dystrophin gene in Duchenne and Becker muscular dystrophy patients. Human Mutation, 2004, 23, 57-66.	2.5	50
147	Terminal Osseous Dysplasia Is Caused by a Single Recurrent Mutation in the FLNA Gene. American Journal of Human Genetics, 2010, 87, 146-153.	6.2	50
148	Guidelines for establishing locus specific databases. Human Mutation, 2012, 33, 298-305.	2.5	48
149	WHSC1L1, on Human Chromosome 8p11.2, Closely Resembles WHSC1 and Maps to a Duplicated Region Shared with 4p16.3. Genomics, 2001, 76, 5-8.	2.9	47
150	Developing a set of ancestry-sensitive DNA markers reflecting continental origins of humans. BMC Genetics, 2009, 10, 69.	2.7	47
151	Therapeutic exon skipping for dysferlinopathies?. European Journal of Human Genetics, 2010, 18, 889-894.	2.8	47
152	Preventing Formation of Toxic N-Terminal Huntingtin Fragments Through Antisense Oligonucleotide-Mediated Protein Modification. Nucleic Acid Therapeutics, 2014, 24, 4-12.	3.6	47
153	Embryonic expression patterns of the Drosophila dystrophin-associated glycoprotein complex orthologs. Gene Expression Patterns, 2004, 4, 153-159.	0.8	46
154	Variation of CNV distribution in five different ethnic populations. Cytogenetic and Genome Research, 2007, 118, 19-30.	1.1	46
155	Extensive intragenic sequence homology in two distinct rat lens gamma-crystallin cDNAs suggests duplications of a primordial gene Proceedings of the National Academy of Sciences of the United States of America, 1982, 79, 6876-6880.	7.1	45
156	Can subtle changes in gene expression be consistently detected with different microarray platforms?. BMC Genomics, 2008, 9, 124.	2.8	45
157	Functional assessment of TSC1 missense variants identified in individuals with tuberous sclerosis complex. Human Mutation, 2012, 33, 476-479.	2.5	45
158	DeepSAGE Reveals Genetic Variants Associated with Alternative Polyadenylation and Expression of Coding and Non-coding Transcripts. PLoS Genetics, 2013, 9, e1003594.	3.5	45
159	Application of massive parallel sequencing to whole genome SNP discovery in the porcine genome. BMC Genomics, 2009, 10, 374.	2.8	44
160	Detecting <i>PKD1</i> variants in polycystic kidney disease patients by single-molecule long-read sequencing. Human Mutation, 2017, 38, 870-879.	2.5	44
161	A dystrophic Duchenne mouse model for testing human antisense oligonucleotides. PLoS ONE, 2018, 13, e0193289.	2.5	44
162	Integrated clinical and omics approach to rare diseases: novel genes and oligogenic inheritance in holoprosencephaly. Brain, 2019, 142, 35-49.	7.6	44

#	Article	IF	CITATIONS
163	Mutalyzer 2: next generation HGVS nomenclature checker. Bioinformatics, 2021, 37, 2811-2817.	4.1	44
164	Assessing the translational landscape of myogenic differentiation by ribosome profiling. Nucleic Acids Research, 2015, 43, 4408-4428.	14.5	43
165	Characterization of the rat \hat{I}^3 -crystallin gene family and its expression in the eye lens. Journal of Molecular Biology, 1985, 182, 419-430.	4.2	41
166	Curating gene variant databases (LSDBs): Toward a universal standard. Human Mutation, 2012, 33, 291-297.	2.5	41
167	Novel Protein-Protein Interactions Inferred from Literature Context. PLoS ONE, 2009, 4, e7894.	2.5	41
168	Structural variation in mammalian Î ³ -crystallins based on computer graphics analyses of human, rat and calf sequences 1. Core packing and surface properties. Experimental Eye Research, 1986, 43, 77-92.	2.6	40
169	Dual exon skipping in myostatin and dystrophin for Duchenne muscular dystrophy. BMC Medical Genomics, 2011, 4, 36.	1.5	40
170	Aging as Accelerated Accumulation of Somatic Variants: Whole-Genome Sequencing of Centenarian and Middle-Aged Monozygotic Twin Pairs. Twin Research and Human Genetics, 2013, 16, 1026-1032.	0.6	40
171	Identification of SCML2, a Second Human Gene Homologous to theDrosophila Sex comb on midleg(Scm): A New Gene Cluster on Xp22. Genomics, 1999, 58, 65-72.	2.9	39
172	Three-tiered noninvasive diagnosis in 96% of patients with Duchenne muscular dystrophy (DMD). Human Mutation, 2004, 23, 203-204.	2.5	39
173	Single Molecule Sequencing of Free DNA from Maternal Plasma for Noninvasive Trisomy 21 Detection. Clinical Chemistry, 2012, 58, 699-706.	3.2	39
174	The genomic landscape of the verrucomicrobial methanotroph Methylacidiphilum fumariolicum SolV. BMC Genomics, 2014, 15, 914.	2.8	39
175	TSSV: a tool for characterization of complex allelic variants in pure and mixed genomes. Bioinformatics, 2014, 30, 1651-1659.	4.1	39
176	OPA1: 516 unique variants and 831 patients registered in an updated centralized Variome database. Orphanet Journal of Rare Diseases, 2019, 14, 214.	2.7	39
177	Accurate quantification of dystrophin mRNA and exon skipping levels in Duchenne Muscular Dystrophy. Laboratory Investigation, 2010, 90, 1396-1402.	3.7	37
178	Fine-tiling array CGH to improve diagnostics for α- and β-thalassemia rearrangements. Human Mutation, 2012, 33, 272-280.	2.5	37
179	Sequence Variant Descriptions: HGVS Nomenclature and Mutalyzer. Current Protocols in Human Genetics, 2016, 90, 7.13.1-7.13.19.	3.5	37
180	Stepwise ABC system for classification of any type of genetic variant. European Journal of Human Genetics, 2022, 30, 150-159.	2.8	37

#	Article	IF	CITATIONS
181	Nucleotide sequence of the rat \hat{I}^3 -crystallin gene region and comparison with an orthologous human region. Gene, 1989, 78, 201-213.	2.2	36
182	Large-scale gene expression analysis of human skeletal myoblast differentiation. Neuromuscular Disorders, 2004, 14, 507-518.	0.6	36
183	A Study of the SORL1 Gene in Alzheimer's Disease and Cognitive Function. Journal of Alzheimer's Disease, 2009, 18, 51-64.	2.6	36
184	Practical guidelines addressing ethical issues pertaining to the curation of human locus-specific variation databases (LSDBs). Human Mutation, 2010, 31, 1179-1184.	2.5	36
185	MutaDATABASE: a centralized and standardized DNA variation database. Nature Biotechnology, 2011, 29, 117-118.	17.5	36
186	High resolution DNA Fiber–fish on yeast artificial chromosomes: direct visualization of DNA replication. Nature Genetics, 1995, 10, 477-479.	21.4	35
187	Fiber FISH as a DNA Mapping Tool. Methods, 1996, 9, 67-73.	3.8	34
188	Expression profiling in stably regenerating skeletal muscle of dystrophin-deficient mdx mice. Neuromuscular Disorders, 2002, 12, S118-S124.	0.6	34
189	MLPA and MAPH: Sensitive Detection of Deletions and Duplications. Current Protocols in Human Genetics, 2006, 51, Unit 7.14.	3.5	34
190	Human lens γ-crystallin sequences are located in the p12-qter region of chromosome 2. Human Genetics, 1985, 70, 217-221.	3.8	33
191	Rat lens β-crystallins are internally duplicated and homologous to γ-crystallins. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1985, 824, 295-303.	2.4	33
192	Integrated study of 100 patients with Xp21 linked muscular dystrophy using clinical, genetic, immunochemical, and histopathological data. Part 3. Differential diagnosis and prognosis Journal of Medical Genetics, 1993, 30, 745-751.	3.2	33
193	CORE_TF: a user-friendly interface to identify evolutionary conserved transcription factor binding sites in sets of co-regulated genes. BMC Bioinformatics, 2008, 9, 495.	2.6	33
194	Rapid and cost effective detection of small mutations in the DMD gene by high resolution melting curve analysis. Neuromuscular Disorders, 2009, 19, 383-390.	0.6	33
195	Transposon proliferation in an asexual parasitoid. Molecular Ecology, 2012, 21, 3898-3906.	3.9	33
196	RNA sequencing: from tag-based profiling to resolving complete transcript structure. Cellular and Molecular Life Sciences, 2014, 71, 3537-3551.	5.4	33
197	Decay of sexual trait genes in an asexual parasitoid wasp. Genome Biology and Evolution, 2016, 8, evw273.	2.5	33
198	Exon Mapping by Fiber-FISH or LR-PCR. Genomics, 1996, 38, 277-282.	2.9	32

#	Article	IF	CITATIONS
199	Characterization ofSCML1,a New Gene in Xp22, with Homology to Developmental Polycomb Genes. Genomics, 1998, 49, 96-102.	2.9	32
200	Genomic imbalances in mental retardation. Journal of Medical Genetics, 2004, 41, 249-255.	3.2	32
201	Intensity-based analysis of two-colour microarrays enables efficient and flexible hybridization designs. Nucleic Acids Research, 2004, 32, 41e-41.	14.5	32
202	Tissue-specific transcript annotation and expression profiling with complementary next-generation sequencing technologies. Nucleic Acids Research, 2010, 38, e165-e165.	14.5	32
203	Dutch genome diagnostic laboratories accelerated and improved variant interpretation and increased accuracy by sharing data. Human Mutation, 2019, 40, 2230-2238.	2.5	32
204	DMD transcript imbalance determines dystrophin levels. FASEB Journal, 2013, 27, 4909-4916.	0.5	30
205	Determining the quality and complexity of next-generation sequencing data without a reference genome. Genome Biology, 2014, 15, 555.	8.8	30
206	A 3-base pair deletion, c.9711_9713del, in DMD results in intellectual disability without muscular dystrophy. European Journal of Human Genetics, 2014, 22, 480-485.	2.8	30
207	Describing Sequence Variants Using HGVS Nomenclature. Methods in Molecular Biology, 2017, 1492, 243-251.	0.9	30
208	The Î ³ -crystallin gene families: Sequence and evolutionary patterns. Journal of Molecular Evolution, 1988, 27, 163-172.	1.8	29
209	Detection of point mutation in dystrophin gene reveals somatic and germline mosaicism in the mother of a patient with Duchenne muscular dystrophy. American Journal of Medical Genetics Part A, 2003, 118A, 296-298.	2.4	29
210	Identification of a region required for TSC1 stability by functional analysis of TSC1missense mutations found in individuals with tuberous sclerosis complex. BMC Medical Genetics, 2009, 10, 88.	2.1	29
211	Expanding the MTM1 mutational spectrum: novel variants including the first multi-exonic duplication and development of a locus-specific database. European Journal of Human Genetics, 2013, 21, 540-549.	2.8	29
212	Predicted and observed sizes of dystrophin in some patients with gene deletions that disrupt the open reading frame Journal of Medical Genetics, 1992, 29, 892-896.	3.2	28
213	Y chromosome detection by Real Time PCR and pyrophosphorolysisâ€activated polymerisation using free fetal DNA isolated from maternal plasma. Prenatal Diagnosis, 2007, 27, 932-937.	2.3	28
214	Deciphering Variability of PKD1 and PKD2 in an Italian Cohort of 643 Patients with Autosomal Dominant Polycystic Kidney Disease (ADPKD). Scientific Reports, 2016, 6, 30850.	3.3	28
215	Linkage between the βB2 and βB3 crystallin genes in man and rat: a remnant of an ancient β-crystallin gene cluster. Gene, 1987, 59, 127-135.	2.2	27
216	Mapping of dystrophin brain promoter: A deletion of this region is compatible with normal intellect. Neuromuscular Disorders, 1991, 1, 327-331.	0.6	27

#	Article	IF	CITATIONS
217	Application of in vitro myo-differentiation of non-muscle cells to enhance gene expression and facilitate analysis of muscle proteins. Neuromuscular Disorders, 1996, 6, 195-202.	0.6	27
218	Mutation Nomenclature. Current Protocols in Human Genetics, 2003, 37, Unit 7.13.	3.5	27
219	Point mutation screening for 16 exons of the dystrophin gene by multiplex single-strand conformation polymorphism analysis. Human Mutation, 1995, 5, 235-242.	2.5	26
220	Characterization of a cytogenetic 17q11.2 deletion in an NF1 patient with a contiguous gene syndrome. Human Genetics, 1996, 98, 646-650.	3.8	26
221	Scanning for genes in large genomic regions: cosmid-based exon trapping of multiple exons in a single product. Nucleic Acids Research, 1996, 24, 1105-1111.	14.5	26
222	Gene expression profiling to monitor therapeutic and adverse effects of antisense therapies for Duchenne muscular dystrophy. Pharmacogenomics, 2006, 7, 281-297.	1.3	26
223	Microarray retriever: a web-based tool for searching and large scale retrieval of public microarray data. Nucleic Acids Research, 2008, 36, W327-W331.	14.5	26
224	β-Globin mutation detection by tagged single-base extension and hybridization to universal glass and flow-through microarrays. European Journal of Human Genetics, 2004, 12, 567-573.	2.8	25
225	Detecting Copy Number Changes in Genomic DNA: MAPH and MLPA. Methods in Cell Biology, 2004, 75, 751-768.	1.1	25
226	Collembolan Transcriptomes Highlight Molecular Evolution of Hexapods and Provide Clues on the Adaptation to Terrestrial Life. PLoS ONE, 2015, 10, e0130600.	2.5	25
227	A Provisional Transcript Map of the Spinal Muscular Atrophy (SMA) Critical Region. European Journal of Human Genetics, 1995, 3, 87-95.	2.8	25
228	Gene expression profiling highlights defective myogenesis in DMD patients and a possible role for bone morphogenetic protein 4. Neurobiology of Disease, 2006, 23, 228-236.	4.4	24
229	Morphology of a human-derived YAC in yeast meiosis. Chromosoma, 1995, 104, 183-188.	2.2	23
230	Gene expression variation between mouse inbred strains. BMC Genomics, 2004, 5, 57.	2.8	23
231	Structural and sequence variants in patients with Silver-Russell syndrome or similar features-Curation of a disease database. Human Mutation, 2018, 39, 345-364.	2.5	23
232	Balanced translocation in a neuroblastoma patient disrupts a cluster of small nuclear RNA UI and tRNA genes in chromosomal band Ip36. Genes Chromosomes and Cancer, 1995, 14, 35-42.	2.8	22
233	Diagnosis of genetic abnormalities in developmentally delayed patients: A new strategy combining MLPA and array-CGH. American Journal of Medical Genetics, Part A, 2007, 143A, 610-614.	1.2	22
234	The Implicitome: A Resource for Rationalizing Gene-Disease Associations. PLoS ONE, 2016, 11, e0149621.	2.5	22

#	Article	IF	CITATIONS
235	HGVS Nomenclature in Practice: An Example from the United Kingdom National External Quality Assessment Scheme. Human Mutation, 2016, 37, 576-578.	2.5	22
236	An integrated 5-Mb physical, genetic, and radiation hybrid map of a 1p36.1 region implicated in neuroblastoma pathogenesis. Genes Chromosomes and Cancer, 2000, 27, 143-152.	2.8	21
237	Literature-aided meta-analysis of microarray data: a compendium study on muscle development and disease. BMC Bioinformatics, 2008, 9, 291.	2.6	21
238	New insights in geneâ€derived therapy: the example of Duchenne muscular dystrophy. Annals of the New York Academy of Sciences, 2010, 1214, 199-212.	3.8	21
239	Exome Sequencing Identifies A Branch Point Variant in Aarskog-Scott Syndrome. Human Mutation, 2013, 34, 430-434.	2.5	21
240	Novel variants in GNAI3 associated with auriculocondylar syndrome strengthen a common dominant negative effect. European Journal of Human Genetics, 2015, 23, 481-485.	2.8	21
241	High throughput nano-liter RT-qPCR to classify soil contamination using a soil arthropod. BMC Molecular Biology, 2011, 12, 11.	3.0	20
242	The DMDgene analysed by field inversion gel electrophoresis. British Medical Bulletin, 1989, 45, 644-658.	6.9	19
243	Split handâ€ f oot malformation, tetralogy of Fallot, mental retardation and a 1 Mb 19p deletion—evidence for further heterogeneity?. American Journal of Medical Genetics, Part A, 2009, 149A, 975-981.	1.2	19
244	Development of NIPBL Locus-Specific Database Using LOVD: From Novel Mutations to Further Genotype-Phenotype Correlations in Cornelia de Lange Syndrome. Human Mutation, 2010, 31, 1216-1222.	2.5	19
245	Literature-aided interpretation of gene expression data with the weighted global test. Briefings in Bioinformatics, 2011, 12, 518-529.	6.5	19
246	Transcriptional responses indicate attenuated oxidative stress in the springtail Folsomia candida exposed to mixtures of cadmium and phenanthrene. Ecotoxicology, 2013, 22, 619-631.	2.4	19
247	An Xp22.1-p22.2 YAC Contig Encompassing the Disease Loci for RS, KFSD, CLS, HYP and RP15: Refined Localization of RS. European Journal of Human Genetics, 1996, 4, 101-104.	2.8	19
248	Sharing data between LSDBs and central repositories. Human Mutation, 2009, 30, 493-495.	2.5	18
249	Characterization of novel SLC6A8 variants with the use of splice-site analysis tools and implementation of a newly developed LOVD database. European Journal of Human Genetics, 2011, 19, 56-63.	2.8	18
250	A formalized description of the standard human variant nomenclature in Extended Backus-Naur Form. BMC Bioinformatics, 2011, 12, S5.	2.6	18
251	Comprehensive Gene-Expression Survey Identifies Wif1 as a Modulator of Cardiomyocyte Differentiation. PLoS ONE, 2010, 5, e15504.	2.5	18
252	The Crystallin Gene Families. Novartis Foundation Symposium, 1984, 106, 208-217.	1.1	18

#	Article	IF	CITATIONS
253	All six rat Î ³ -crystallin genes are located on chromosome 9. Experimental Eye Research, 1987, 45, 747-750.	2.6	17
254	Splicing mutations in DMD/BMD detected by RT-PCR/PTT: detection of a 19AA insertion in the cysteine rich domain of dystrophin compatible with BMD Journal of Medical Genetics, 1996, 33, 935-939.	3.2	17
255	New possibilities for prenatal diagnosis of muscular dystrophies: forced myogenesis with an adenoviral MyoD-vector. Lancet, The, 1999, 353, 727-728.	13.7	17
256	Novel synonymous substitution in POMGNT1 promotes exon skipping in a patient with congenital muscular dystrophy. Journal of Human Genetics, 2008, 53, 565-572.	2.3	17
257	High-throughput genotyping of mannose-binding lectin variants using high-resolution DNA-melting analysis. Human Mutation, 2010, 31, E1286-E1293.	2.5	17
258	SplicePie: a novel analytical approach for the detection of alternative, non-sequential and recursive splicing. Nucleic Acids Research, 2015, 43, e80-e80.	14.5	17
259	Selection and characterization of llama single domain antibodies against N-terminal huntingtin. Neurological Sciences, 2015, 36, 429-434.	1.9	16
260	Prenatal diagnosis of Duchenne muscular dystrophy: A three-year experience in a rapidly evolving field. Journal of Inherited Metabolic Disease, 1989, 12, 174-190.	3.6	15
261	Somatic mutation databases as tools for molecular epidemiology and molecular pathology of cancer: Proposed guidelines for improving data collection, distribution, and integration. Human Mutation, 2009, 30, 275-282.	2.5	14
262	Newborn screening of duchenne muscular dystrophy specifically targeting deletions amenable to exon-skipping therapy. Scientific Reports, 2021, 11, 3011.	3.3	14
263	Specific isolation of 3′-terminal exons of human genes by exon trapping. Nucleic Acids Research, 1994, 22, 4148-4153.	14.5	13
264	Two polymorphic dinucleotide repeats in intron 44 of the dystrophin gene. Human Genetics, 1995, 95, 475-477.	3.8	13
265	Sarcoglycanopathies and the risk of undetected deletion alleles in diagnosis. Human Mutation, 2005, 26, 59-59.	2.5	13
266	Experiences with array-based sequence capture; toward clinical applications. European Journal of Human Genetics, 2011, 19, 50-55.	2.8	13
267	<scp><i>GPSM</i></scp> <i>2</i> and Chudley– <scp>M</scp> c <scp>C</scp> ullough Syndrome: A Dutch Founder Variant Brought to North America. American Journal of Medical Genetics, Part A, 2013, 161, 973-976.	1.2	13
268	GeneHopper: a web-based search engine to link gene-expression platforms through GenBank accession numbers. Genome Biology, 2003, 4, R35.	9.6	12
269	The DNA Bank: High-Security Bank Accounts to Protect and Share Your Genetic Identity. Human Mutation, 2015, 36, 657-659.	2.5	12
270	<i>NR2F1</i> database: 112 variants and 84 patients support refining the clinical synopsis of Bosch–Boonstra–Schaaf optic atrophy syndrome. Human Mutation, 2022, 43, 128-142.	2.5	12

#	Article	IF	CITATIONS
271	Methods for pulsed-field gel electrophoresis. Applied Biochemistry and Biotechnology, 1993, 38, 161-177.	2.9	11
272	Mutation (variation) databases and registries: a rationale for coordination of efforts. Nature Reviews Genetics, 2011, 12, 881-881.	16.3	11
273	High-resolution mapping by YAC fragmentation of a 2.5-Mb Xp22 region containing the human RS, KFSD and CLS disease genes. Mammalian Genome, 1997, 8, 497-501.	2.2	10
274	A structured simple form for ordering genetic tests is needed to ensure coupling of clinical detail (phenotype) with DNA variants (genotype) to ensure utility in publication and databases. Human Mutation, 2007, 28, 931-932.	2.5	10
275	Verifying nomenclature of DNA variants in submitted manuscripts: Guidance for journals. Human Mutation, 2021, 42, 3-7.	2.5	10
276	A polymorphic STS in intron 44 of the dystrophin gene. Human Genetics, 1994, 93, 479-480.	3.8	9
277	Determination of the genomic organization of human presenilin 1 by fiber-FISH analysis and restriction mapping of cloned DNA. Mammalian Genome, 1999, 10, 410-414.	2.2	9
278	A complex rearrangement on chromosome 22 affecting both homologues; haplo-insufficiency of the Cat eye syndrome region may have no clinical relevance. Human Genetics, 2006, 120, 77-84.	3.8	9
279	Hypomorphic <i>MKS1</i> mutation in a Pakistani family with mild Joubert syndrome and atypical features: Expanding the phenotypic spectrum of <i>MKS1</i> â€related ciliopathies. American Journal of Medical Genetics, Part A, 2016, 170, 3289-3293.	1.2	9
280	The Molecular Structures and Interactions of Bovine and Human γ rystallins. Novartis Foundation Symposium, 1984, 106, 219-236.	1.1	9
281	Immunohistochemical studies show truncated dystrophins in the myotubes of three fetuses at risk for Duchenne muscular dystrophy Journal of Medical Genetics, 1991, 28, 505-510.	3.2	8
282	The Complete Genome Sequence of the Murine Pathobiont Helicobacter typhlonius. Frontiers in Microbiology, 2016, 6, 1549.	3.5	8
283	Phenotype predictions for exon deletions/duplications: A user guide for professionals and clinicians using Becker and Duchenne muscular dystrophy as examples. Human Mutation, 2019, 40, 1630-1633.	2.5	8
284	WGS-based telomere length analysis in Dutch family trios implicates stronger maternal inheritance and a role for RRM1 gene. Scientific Reports, 2019, 9, 18758.	3.3	8
285	Using Personal Genomic Data within Primary Care: A Bioinformatics Approach to Pharmacogenomics. Genes, 2020, 11, 1443.	2.4	8
286	A CA-repeat polymorphism near DXS418 (P122). Human Molecular Genetics, 1993, 2, 2202-2202.	2.9	7
287	Multiplex PCR for Identifying DMD Gene Deletions. Current Protocols in Human Genetics, 2006, 49, Unit 9.3.	3.5	7
288	Cost-effective HRMA pre-sequence typing of clone libraries; application to phage display selection. BMC Biotechnology, 2009, 9, 50.	3.3	7

#	Article	IF	CITATIONS
289	Borderline repeat expansion in Huntington's disease. Lancet, The, 1993, 342, 1491-1492.	13.7	6
290	Optimized Non-Radioactive Protein Truncation Test for Mutation Analysis of the Adenomatous Polyposis Coli (APC) Gene. Clinical Chemistry and Laboratory Medicine, 1998, 36, 567-70.	2.3	6
291	Efficient variant data preparation for Human Mutation manuscripts: Variants and phenotypes. Human Mutation, 2019, 40, 1009-1009.	2.5	6
292	The Role of the European Society of Human Genetics in Delivering Genomic Education. Frontiers in Genetics, 2021, 12, 693952.	2.3	6
293	Mutation nomenclature extensions and suggestions to describe complex mutations: A discussion. , 2000, 15, 7.		6
294	A simple and rapid method for separating co-cloned YACs. Trends in Genetics, 1994, 10, 40-40.	6.7	5
295	Centromeric and Noncentromeric <i>ADE2</i> -Selectable Fragmentation Vectors for Yeast Artificial Chromosomes in AB1380. Genome Research, 1997, 7, 657-660.	5.5	5
296	A protein truncation test for Emery–Dreifuss muscular dystrophy (EMD): detection of N-terminal truncating mutations. Neuromuscular Disorders, 1999, 9, 247-250.	0.6	5
297	Call for participation in the neurogenetics consortium within the Human Variome Project. Neurogenetics, 2011, 12, 169-173.	1.4	5
298	Comprehensive Registration of DNA Sequence Variants Associated with Inherited Retinal Diseases in Leiden Open Variation Databases. Human Mutation, 2014, 35, 147-148.	2.5	5
299	Critical points for an accurate human genome analysis. Human Mutation, 2017, 38, 912-921.	2.5	5
300	A Case Series of Familial ARID1B Variants Illustrating Variable Expression and Suggestions to Update the ACMG Criteria. Genes, 2021, 12, 1275.	2.4	5
301	Pulsed-Field Gel Electrophoresis. , 1991, , 169-182.		4
302	Three Genome-wide Association Studies and a Linkage Analysis Identify HERC2 as a Human Iris Color Gene. American Journal of Human Genetics, 2008, 82, 801.	6.2	4
303	Genetic Tests Need the Human Variome Project. Genetic Testing and Molecular Biomarkers, 2011, 15, 3-3.	0.7	4
304	Molecular diagnostics of the HBB gene in an Omani cohort using bench-top DNA Ion Torrent PGM technology. Blood Cells, Molecules, and Diseases, 2014, 53, 133-137.	1.4	4
305	New locus underlying auriculocondylar syndrome (ARCND): 430 kb duplication involving <i>TWIST1</i> regulatory elements. Journal of Medical Genetics, 2022, 59, 895-905.	3.2	4
306	Construction of dystrophin fusion proteins to raise targeted antibodies to different epitopes. FEBS Letters, 1992, 308, 293-297.	2.8	3

1

#	Article	IF	CITATIONS
307	Defining the Proximal Border of the Huntington Disease Candidate Region by Multipoint Recombination Analyses. Genomics, 1993, 16, 599-604.	2.9	3
308	Exclusion of PPEF as the gene causing X-linked juvenile retinoschisis. Human Genetics, 1997, 101, 235-237.	3.8	3
309	[7] Cosmid-based exon trapping. Methods in Enzymology, 1999, 303, 100-110.	1.0	3
310	Yet another database?. Human Mutation, 2018, 39, 755-755.	2.5	3
311	Integrating Whole-Genome Sequencing in Clinical Genetics: A Novel Disruptive Structural Rearrangement Identified in the Dystrophin Gene (DMD). International Journal of Molecular Sciences, 2022, 23, 59.	4.1	3
312	The protein truncation test: A review. Human Mutation, 1999, 14, 95.	2.5	3
313	Protein Truncation Test. Current Protocols in Human Genetics, 2004, 42, Unit9.11.	3.5	2
314	CLI-mate. , 2012, , .		2
315	Mandatory variant submission-Our experiences. Human Mutation, 2012, 33, 1-1.	2.5	2
316	The Human Variome Project: ensuring the quality of DNA variant databases in inherited renal disease. Pediatric Nephrology, 2015, 30, 1893-1901.	1.7	2
317	Properties and units in the clinical laboratory sciences part XXIV. Properties and units in clinical molecular genetics (technical report 2017). Clinica Chimica Acta, 2018, 484, 122-131.	1.1	2
318	ACO2 clinicobiological dataset with extensive phenotype ontology annotation. Scientific Data, 2021, 8, 205.	5.3	2
319	Detection of Truncated Dystrophin in Fetal DMD Myotubes. Advances in Experimental Medicine and Biology, 1990, 280, 17-23.	1.6	2
320	Accurate quantification of dystrophin mRNA and exon skipping levels in Duchenne Muscular Dystrophy. Laboratory Investigation, 0, , .	3.7	2
321	Effect of post-mortem delay on N-terminal huntingtin protein fragments in human control and Huntington disease brain lysates. PLoS ONE, 2017, 12, e0178556.	2.5	2
322	Microscopy and image analysis of fibre-FISH. Bioimaging, 1996, 4, 84-92.	1.3	1
323	Point Mutation Detection in the Dystrophin Gene. , 2001, , 85-109.		1

Exon Trapping: Application of a Large-Insert Multiple-Exon-Trapping System. , 2001, 175, 201-215.

#	Article	IF	CITATIONS
325	Pathogenic: Light or Dark Skin?. Human Mutation, 2014, 35, 520-520.	2.5	1
326	Properties and units in the clinical laboratory sciences part XXIV. Properties and units in clinical molecular genetics (IUPAC Technical Report). Pure and Applied Chemistry, 2018, 90, 1199-1220.	1.9	1
327	Protein Truncation Test. Current Protocols in Human Genetics, 1999, 23, 9.11.1.	3.5	0
328	RNA-Based Variant Detection. , 2010, , 293-298.		0
329	Databases in Human and Medical Genetics. , 2010, , 941-960.		0
330	Using systematic nomenclature for CFTR variants: Improvement needed. Human Mutation, 2011, 32, v-v.	2.5	0
331	Reply to Clarity and claims in variation/mutation databasing. Nature Biotechnology, 2011, 29, 792-794.	17.5	0
332	Redefining Mutational Spectra via Updated Locus-specific Databases. Human Mutation, 2014, 35, v-v.	2.5	0
333	The InSiGHT Database: An Example LOVD System. , 2018, , 469-478.		0
334	Data sharing and gene variant databases. , 2021, , 221-236.		0
335	An Exon Trapping System Providing Size Selection of Spliced Clones and Facilitating Direct Cloning. , 1994, , 169-181.		0
336	Expression of the Human Dp 71 (Apo-Dystrophin-1) Gene from a 760-kb DMD-YAC Transferred to Mouse Cells. European Journal of Human Genetics, 1995, 3, 168-179.	2.8	0
337	The Protein Truncation Test (PTT) for Rapid Detection of Translation-Terminating Mutations. , 1996, , 323-341.		0
338	Morphology of a human-derived YAC in yeast meiosis. Chromosoma, 1995, 104, 183-188.	2.2	0
339	Reporting of Genetic Variants by Diagnostic Laboratories and other Centres. Clinical Biochemist Reviews, 2012, 33, 21-4.	3.3	0