Kwang-chun Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5412269/publications.pdf

Version: 2024-02-01

94269 106150 5,102 179 37 65 citations g-index h-index papers 182 182 182 2334 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Flexible heliogyro solar sail under solar radiation pressure and gravitational force. Acta Astronautica, 2021, 179, 186-196.	1.7	9
2	Sparse identification of nonlinear dynamical systems via reweighted <mml:math altimg="si188.svg" display="inline" id="d1e1573" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi>â,,"</mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:math>	nml:mn><	/mml:mrow>
3	An iterative scheme of flexibilityâ€based component mode synthesis with higherâ€order residual modal compensation. International Journal for Numerical Methods in Engineering, 2021, 122, 3171-3190.	1.5	7
4	Partitioned formulation of contactâ€impact problems with stabilized contact constraints and reciprocal mass matrices. International Journal for Numerical Methods in Engineering, 2021, 122, 4609-4636.	1.5	2
5	Bi-penalty stabilized technique with predictor–corrector time scheme for contact-impact problems of elastic bars. Mathematics and Computers in Simulation, 2021, 189, 305-324.	2.4	4
6	A new approach for nonmatching interface construction by the method of localized Lagrange multipliers. Computer Methods in Applied Mechanics and Engineering, 2020, 361, 112728.	3.4	4
7	Largeâ€step explicit time integration via mass matrix tailoring. International Journal for Numerical Methods in Engineering, 2020, 121, 1647-1664.	1.5	5
8	Accelerating the convergence of AFETI partitioned analysis of heterogeneous structural dynamical systems. Computer Methods in Applied Mechanics and Engineering, 2020, 360, 112726.	3.4	4
9	Solarelastic Instability of Periodically Time-Varying Heliogyro Blade. Journal of Spacecraft and Rockets, 2020, 57, 398-404.	1.3	3
10	Acceleration of uncertainty propagation through Lagrange multipliers in partitioned stochastic method. Computer Methods in Applied Mechanics and Engineering, 2020, 362, 112837.	3.4	2
11	INVERSE MASS MATRIX FOR HIGHER-ORDER FINITE ELEMENT METHOD IN LINEAR FREE-VIBRATION PROBLEMS. , 2020, , .		0
12	Iterative Component Mode Synthesis Using a Priori and a Posteriori Criteria. AIAA Journal, 2019, 57, 2145-2157.	1.5	5
13	Explicit multistep time integration for discontinuous elastic stress wave propagation in heterogeneous solids. International Journal for Numerical Methods in Engineering, 2019, 118, 276-302.	1.5	6
14	Inverse mass matrix for isogeometric explicit transient analysis via the method of localized Lagrange multipliers. International Journal for Numerical Methods in Engineering, 2019, 117, 939-966.	1.5	12
15	Formulation of Flexibility-Based Component Mode Synthesis for Transient Analysis. AIAA Journal, 2019, 57, 858-869.	1.5	3
16	A strongly coupled model reduction of vibro-acoustic interaction. Computer Methods in Applied Mechanics and Engineering, 2019, 347, 495-516.	3.4	29
17	A staggered explicit–implicit finite element formulation for electroactive polymers. Computer Methods in Applied Mechanics and Engineering, 2018, 337, 150-164.	3.4	14
18	Topology optimization of deformable bodies with dissimilar interfaces. Computers and Structures, 2018, 198, 1-11.	2.4	11

#	Article	IF	CITATIONS
19	Minimum influence point method to construct fictitious frame domain for treating nonmatching interface meshes. Journal of Mechanical Science and Technology, 2018, 32, 1253-1260.	0.7	3
20	Inverse mass matrix via the method of localized lagrange multipliers. International Journal for Numerical Methods in Engineering, 2018, 113, 277-295.	1.5	17
21	A component mode selection method based on a consistent perturbation expansion of interface displacement. Computer Methods in Applied Mechanics and Engineering, 2018, 330, 578-597.	3.4	27
22	Motion Control of Piezoelectric Tripod Platform via Feedforward Hysteresis Compensation. Advanced Materials Technologies, 2018, 3, 1800298.	3.0	5
23	Piezoelectric Actuators: Motion Control of Piezoelectric Tripod Platform via Feedforward Hysteresis Compensation (Adv. Mater. Technol. 12/2018). Advanced Materials Technologies, 2018, 3, 1870049.	3.0	0
24	Virtual tetrahedral gap element to connect three-dimensional non-coincident interfaces. Finite Elements in Analysis and Design, 2018, 152, 18-26.	1.7	4
25	Treatment of Non-matching Interfaces in Partitioned Fluid–Structure Interaction Problems. Computational and Experimental Methods in Structures, 2018, , 145-178.	0.2	2
26	Virtual gap element approach for the treatment of non-matching interface using three-dimensional solid elements. Computational Mechanics, 2017, 60, 585-594.	2.2	7
27	Stabilized mixed displacement–pressure finite element formulation for linear hydrodynamic problems with free surfaces. Computer Methods in Applied Mechanics and Engineering, 2017, 319, 314-337.	3.4	5
28	Efficient implementation of an explicit partitioned shear and longitudinal wave propagation algorithm. International Journal for Numerical Methods in Engineering, 2016, 107, 543-579.	1.5	7
29	Partitioned formulation and stability analysis of a fluid interacting with a saturated porous medium by localised Lagrange multipliers. International Journal for Numerical Methods in Engineering, 2016, 106, 1071-1099.	1.5	3
30	Compact piezoelectric tripod manipulator based on a reverse bridge-type amplification mechanism. Smart Materials and Structures, 2016, 25, 095028.	1.8	17
31	Evaluating Mode Selection Methods for Component Mode Synthesis. AIAA Journal, 2016, 54, 2852-2863.	1.5	34
32	Structural topology optimization of the transition piece for an offshore wind turbine with jacket foundation. Renewable Energy, 2016, 85, 1214-1225.	4.3	31
33	A gap element for treating non-matching discrete interfaces. Computational Mechanics, 2015, 56, 551-563.	2.2	12
34	Tunable acoustic waveguide based on vibro-acoustic metamaterials with shunted piezoelectric unit cells. Smart Materials and Structures, 2015, 24, 105018.	1.8	12
35	Omnidirectional two-dimensional acoustic cloak by axisymmetric cylindrical lattices. Wave Motion, 2015, 54, 157-169.	1.0	7
36	Mass Matrix Templates: General Description and 1D Examples. Archives of Computational Methods in Engineering, 2015, 22, 1-65.	6.0	37

#	Article	IF	Citations
37	A MODE SELECTION ALGORITHM FOR THE FLEXIBILITY-BASED COMPONENT MODE SYNTHESIS., 2015,,.		4
38	A scaling law for form drag coefficients in incompressible turbulent flows. Ocean Engineering, 2014, 92, 75-82.	1.9	0
39	Partitioned analysis of flexible multibody systems using filtered linear finite element deformational modes. International Journal for Numerical Methods in Engineering, 2014, 99, 102-128.	1.5	2
40	Investigation of Wake Effects on Aeroelastic Responses of Horizontal-Axis Wind-Turbines. AIAA Journal, 2014, 52, 1133-1144.	1.5	7
41	A method for multidimensional wave propagation analysis via componentâ€wise partition of longitudinal and shear waves. International Journal for Numerical Methods in Engineering, 2013, 95, 212-237.	1.5	13
42	Active Disturbance Rejection Control for Precise Position Tracking of Ionic Polymer–Metal Composite Actuators. IEEE/ASME Transactions on Mechatronics, 2013, 18, 86-95.	3.7	63
43	The impact of yaw error on aeroelastic characteristics of a horizontal axis wind turbine blade. Renewable Energy, 2013, 60, 256-268.	4.3	63
44	Torsional Stiffness Effects on the Dynamic Stability of a Horizontal Axis Wind Turbine Blade. Energies, 2013, 6, 2242-2261.	1.6	17
45	How does clamping pressure influence actuation performance of soft ionic polymer–metal composites?. Smart Materials and Structures, 2013, 22, 025014.	1.8	13
46	The nsBETI method: an extension of the FETI method to nonâ€symmetrical BEMâ€FEM coupled problems. International Journal for Numerical Methods in Engineering, 2013, 93, 1015-1039.	1.5	6
47	A direct coupling method for 3D hydroelastic analysis of floating structures. International Journal for Numerical Methods in Engineering, 2013, 96, 842-866.	1.5	33
48	A Method for Computation of Wave Propagation in Heterogeneous Solids: Algorithm Description. , 2013, , .		0
49	A Mode Selection Criterion Based on Flexibility Approach in Component Mode Synthesis. , 2012, , .		13
50	Effects of Bonding Layer Characteristics on Strain Transmission and Bond Fatigue Performance. Journal of Adhesion Science and Technology, 2012, 26, 1325-1339.	1.4	6
51	Partitioned vibration analysis of internal fluidâ€structure interaction problems. International Journal for Numerical Methods in Engineering, 2012, 92, 268-300.	1.5	21
52	A simple explicit–implicit finite element tearing and interconnecting transient analysis algorithm. International Journal for Numerical Methods in Engineering, 2012, 89, 1203-1226.	1.5	13
53	A method for computation of discontinuous wave propagation in heterogeneous solids: basic algorithm description and application to oneâ€dimensional problems. International Journal for Numerical Methods in Engineering, 2012, 91, 622-643.	1.5	23
54	A Classification of Interface Treatments for FSI. Lecture Notes in Computational Science and Engineering, 2011, , 27-51.	0.1	4

#	Article	IF	CITATIONS
55	Electroâ€active Polymer Actuator Based on Sulfonated Polyimide with Highly Conductive Silver Electrodes Via Selfâ€metallization. Macromolecular Rapid Communications, 2011, 32, 1583-1587.	2.0	23
56	A time-discontinuous implicit variational integrator for stress wave propagation analysis in solids. Computer Methods in Applied Mechanics and Engineering, 2011, 200, 649-664.	3.4	13
57	An Explicit Integration Method for Analysis of Wave Propagation in Heterogeneous Materials. , 2011, , .		0
58	Partitioned formulation of internal and gravity waves interacting with flexible structures. Computer Methods in Applied Mechanics and Engineering, 2010, 199, 723-733.	3.4	6
59	The d'Alembert–Lagrange principal equations and applications to floating flexible systems. International Journal for Numerical Methods in Engineering, 2009, 77, 1072-1099.	1.5	10
60	Treatment of acoustic fluid–structure interaction by localized Lagrange multipliers and comparison to alternative interface-coupling methods. Computer Methods in Applied Mechanics and Engineering, 2009, 198, 986-1005.	3.4	45
61	New approximations of external acoustic–structural interactions: Derivation and evaluation. Computer Methods in Applied Mechanics and Engineering, 2009, 198, 1368-1388.	3.4	11
62	Crack Identification in a Rotating Shaft via the Reverse Directional Frequency Response Functions. Journal of Vibration and Acoustics, Transactions of the ASME, 2009, 131, .	1.0	10
63	Partitioning based reduced order modelling approach for transient analyses of large structures. Engineering Computations, 2009, 26, 46-68.	0.7	12
64	ANALYSIS OF ELASTO-PLASTIC STRESS WAVES BY A TIME-DISCONTINUOUS VARIATIONAL INTEGRATOR OF HAMILTONIAN. , 2009, , .		0
65	A formulation based on localized Lagrange multipliers for BEM–FEM coupling in contact problems. Computer Methods in Applied Mechanics and Engineering, 2008, 197, 623-640.	3.4	29
66	Treatment of acoustic fluid–structure interaction by localized Lagrange multipliers: Formulation. Computer Methods in Applied Mechanics and Engineering, 2008, 197, 3057-3079.	3.4	47
67	A continuum-based modeling of MEMS devices for estimating their resonant frequencies. Computer Methods in Applied Mechanics and Engineering, 2008, 198, 234-244.	3.4	5
68	ANALYSIS OF ELASTO-PLASTIC STRESS WAVES BY A TIME-DISCONTINUOUS VARIATIONAL INTEGRATOR OF HAMILTONIAN. International Journal of Modern Physics B, 2008, 22, 6259-6264.	1.0	0
69	Model Based Partitioned Simulation of Coupled Systems. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2008, , 171-216.	0.3	2
70	Finite Element Modeling of Sail Deformation Under Solar Radiation Pressure. Journal of Spacecraft and Rockets, 2007, 44, 514-521.	1.3	30
71	Design Improvements of a Solar Sail for Stiffness Increase and Passive Attitude Stabilization. , 2007, , .		2
72	FEM and BEM coupling in elastostatics using localized Lagrange multipliers. International Journal for Numerical Methods in Engineering, 2007, 69, 2058-2074.	1.5	20

#	Article	IF	CITATIONS
73	Reduction of substructural interface degrees of freedom in flexibility-based component mode synthesis. International Journal for Numerical Methods in Engineering, 2007, 70, 163-180.	1.5	42
74	A simple computer implementation of membrane wrinkle behaviourvia a projection technique. International Journal for Numerical Methods in Engineering, 2007, 71, 1231-1259.	1.5	36
75	Evaluation of membrane structure designs using boundary web cables for uniform tensioning. Acta Astronautica, 2007, 60, 846-857.	1.7	19
76	Active Vibration Suppression Strategy for a Membrane Reflector/Mirror Undergoing Slewing Maneuvers. , 2006, , .		1
77	Effect of Static and Dynamic Solar Sail Deformation on Center of Pressure and Thrust Forces. , 2006, ,		7
78	A formulation of conserving impact system based on localized Lagrange multipliers. International Journal for Numerical Methods in Engineering, 2006, 68, 98-124.	1.5	5
79	Localized Vibration Isolation Strategy for Low-Frequency Excitations in Membrane Space Structures. Journal of Vibration and Acoustics, Transactions of the ASME, 2006, 128, 790-797.	1.0	10
80	Distributed and Localized Active Vibration Isolation in Membrane Structures. Journal of Spacecraft and Rockets, 2006, 43, 1107-1116.	1.3	15
81	Partitioned formulation of frictional contact problems using localized Lagrange multipliers. Communications in Numerical Methods in Engineering, 2005, 22, 319-333.	1.3	10
82	Structural dynamics modification via reorientation of modification elements. Finite Elements in Analysis and Design, 2005, 42, 50-70.	1.7	3
83	Dynamic Wrinkle Reduction Strategies for Cable-Suspended Membrane Structures. Journal of Spacecraft and Rockets, 2005, 42, 850-858.	1.3	29
84	Advanced Cable Boundary Layer Design in Membrane Structures for Dynamic Wrinkle Reduction. , 2005, , .		5
85	Design Parameter Effects for Wrinkle Reduction in Membrane Space Structures. , 2005, , .		5
86	Distributed Localized Vibration Control of Membrane Structures Using Piezoelectric Actuators. , 2005, , .		5
87	Theory and Application of Localized Vibration Control Strategy in Cable-Suspended Membrane Space Structures. , 2005, , .		1
88	Partitioned Component Mode Synthesis via a Flexibility Approach. AIAA Journal, 2004, 42, 1236-1245.	1.5	83
89	High-Fidelity Modeling of MEMS Resonatorsâ€"Part II: Coupled Beam-Substrate Dynamics and Validation. Journal of Microelectromechanical Systems, 2004, 13, 248-257.	1.7	21
90	High-Fidelity Modeling of MEMS Resonators—Part I: Anchor Loss Mechanisms Through Substrate. Journal of Microelectromechanical Systems, 2004, 13, 238-247.	1.7	62

#	Article	IF	CITATIONS
91	Dynamic Wrinkle Reduction Strategies for Cable Suspended Membrane Structures. , 2004, , .		5
92	Structural system identification: from reality to models. Computers and Structures, 2003, 81, 1149-1176.	2.4	122
93	Evaluation of Cable Suspended Membrane Structures for Wrinkle-Free Design. , 2003, , .		22
94	Partitioned Structural Eigenvalue Analysis, Part I: Mode Synthesis Approximations and Error Estimates. , 2002, , .		1
95	Partitioned Structural Eigenvalue Analysis, Part II: Implementation and Performance Evaluation. , 2002, , .		1
96	A simple algorithm for localized construction of non-matching structural interfaces. International Journal for Numerical Methods in Engineering, 2002, 53, 2117-2142.	1.5	95
97	A contact formulation based on localized Lagrange multipliers: formulation and application to two-dimensional problems. International Journal for Numerical Methods in Engineering, 2002, 54, 263-297.	1.5	45
98	The construction of free–free flexibility matrices for multilevel structural analysis. Computer Methods in Applied Mechanics and Engineering, 2002, 191, 2139-2168.	3.4	27
99	Numerically generated tangent stiffness matrices for nonlinear structural analysis. Computer Methods in Applied Mechanics and Engineering, 2002, 191, 5833-5846.	3.4	9
100	A Theory for Strain-Based Structural System Identification. Journal of Applied Mechanics, Transactions ASME, 2001, 68, 521-527.	1.1	31
101	Partitioned formulation of internal fluid–structure interaction problems by localized Lagrange multipliers. Computer Methods in Applied Mechanics and Engineering, 2001, 190, 2989-3007.	3.4	88
102	Partitioned analysis of coupled mechanical systems. Computer Methods in Applied Mechanics and Engineering, 2001, 190, 3247-3270.	3.4	557
103	<title>Theory of localized vibration control via partitioned LQR synthesis</title> ., 2000, 3984, 520.		2
104	A variational principle for the formulation of partitioned structural systems. International Journal for Numerical Methods in Engineering, 2000, 47, 395-418.	1.5	138
105	Partitioned solution of reduced–integrated finite element equations. Computers and Structures, 2000, 74, 281-292.	2.4	4
106	A family of implicit partitioned time integration algorithms for parallel analysis of heterogeneous structural systems. Computational Mechanics, 2000, 24, 463-475.	2.2	20
107	A localized version of the method of Lagrange multipliers and its applications. Computational Mechanics, 2000, 24, 476-490.	2.2	90
108	Use of Substructural Transmission Zeros for Structural Health Monitoring. AIAA Journal, 2000, 38, 1040-1046.	1.5	6

#	Article	IF	CITATIONS
109	<title>Experimental application of a structural health monitoring methodology</title> ., 2000, , .		5
110	A variational principle for the formulation of partitioned structural systems. International Journal for Numerical Methods in Engineering, 2000, 47, 395-418.	1.5	3
111	Use of substructural transmission zeros for structural health monitoring. AIAA Journal, 2000, 38, 1040-1046.	1.5	0
112	Extraction of Substructural Flexibility from Global Frequencies and Mode Shapes. AIAA Journal, 1999, 37, 1444-1451.	1.5	19
113	Extraction of substructural flexibility from global frequencies and mode shapes. AIAA Journal, 1999, 37, 1444-1451.	1.5	2
114	The construction of free–free flexibility matrices as generalized stiffness inverses. Computers and Structures, 1998, 68, 411-418.	2.4	39
115	Structural Damage Detection Using Localized Flexibilities. Journal of Intelligent Material Systems and Structures, 1998, 9, 911-919.	1.4	24
116	A Variational Framework for Solution Method Developments in Structural Mechanics. Journal of Applied Mechanics, Transactions ASME, 1998, 65, 242-249.	1.1	79
117	Extraction of Impulse Response Data via Wavelet Transform for Structural System Identification. Journal of Vibration and Acoustics, Transactions of the ASME, 1998, 120, 252-260.	1.0	72
118	Identification of Structural Dynamics Models Using Wavelet-Generated Impulse Response Data. Journal of Vibration and Acoustics, Transactions of the ASME, 1998, 120, 261-266.	1.0	23
119	Extraction of Normal Modes and Full Modal Damping from Complex Modal Parameters. AIAA Journal, 1997, 35, 1187-1194.	1.5	19
120	A direct flexibility method. Computer Methods in Applied Mechanics and Engineering, 1997, 149, 319-337.	3.4	34
121	An algebraically partitioned FETI method for parallel structural analysis: algorithm description. International Journal for Numerical Methods in Engineering, 1997, 40, 2717-2737.	1.5	69
122	An algebraically partitioned FETI method for parallel structural analysis: performance evaluation. International Journal for Numerical Methods in Engineering, 1997, 40, 2739-2758.	1.5	43
123	An algebraically partitioned FETI method for parallel structural analysis: performance evaluation. , 1997, 40, 2739.		1
124	Extraction of normal modes and full modal damping from complex modal parameters. AIAA Journal, 1997, 35, 1187-1194.	1.5	8
125	Helically Curved Unfurlable Structural Elements: Kinematic Analysis and Laboratory Demonstration. Journal of Mechanical Design, Transactions of the ASME, 1996, 118, 22-28.	1.7	8
126	The Deployment of Curved Closed Tubes. Journal of Mechanical Design, Transactions of the ASME, 1996, 118, 337-339.	1.7	2

#	Article	IF	CITATIONS
127	Equilibrium constrained assumed natural co-ordinate strain plate elements. International Journal for Numerical Methods in Engineering, 1995, 38, 2951-2977.	1.5	4
128	Consistent model reduction of experimental modal parameters for reduced-order control. Journal of Guidance, Control, and Dynamics, 1995, 18, 748-755.	1.6	1
129	Minimal-order experimental component mode synthesis - New results and challenges. AIAA Journal, 1995, 33, 1477-1485.	1.5	9
130	Slewing Maneuvers and Vibration Control of Space Structures by Feedforward/Feedback Moment-Gyro Controls. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 1995, 117, 343-351.	0.9	35
131	Method for determining minimum-order mass and stiffness matrices from modal test data. AIAA Journal, 1995, 33, 128-135.	1.5	43
132	Second-order structural identification procedure via state-space-based system identification. AIAA Journal, 1994, 32, 397-406.	1.5	119
133	A natural partitioning scheme for parallel simulation of multibody systems. International Journal for Numerical Methods in Engineering, 1993, 36, 945-967.	1.5	8
134	A discrete momentum-conserving explicit algorithm for rigid body dynamics analysis. International Journal for Numerical Methods in Engineering, 1993, 36, 1071-1083.	1.5	6
135	A computational procedure for flexible beams with frictional contact constraints. International Journal for Numerical Methods in Engineering, 1993, 36, 3781-3800.	1.5	4
136	Formulation and Solution of Inverse Spaghetti Problem: Application to Beam Deployment Dynamics. AIAA Journal, 1993, 31, 339-347.	1.5	24
137	Active Adhesion Concepts for In-Orbit Structural Construction. Journal of Reinforced Plastics and Composites, 1993, 12, 934-942.	1.6	1
138	<title>Dynamics of large space-structure elements in orbit through adaptive deployment construction</title> ., 1993, 1917, 1042.		1
139	Application of Adaptive Structure Concepts to Construction of Space Systems in Orbit: Concepts and Formulation. Journal of Intelligent Material Systems and Structures, 1992, 3, 719-734.	1.4	4
140	Dynamics of flexible beams for multibody systems: A computational procedure. Computer Methods in Applied Mechanics and Engineering, 1992, 96, 373-408.	3.4	34
141	A modular multibody analysis capability for high-precision, active control and real-time applications. International Journal for Numerical Methods in Engineering, 1991, 32, 1767-1798.	1.5	46
142	An unconditionally stable staggered algorithm for transient finite element analysis of coupled thermoelastic problems. Computer Methods in Applied Mechanics and Engineering, 1991, 85, 349-365.	3.4	76
143	Partitioned solution procedure for control-structure interaction simulations. Journal of Guidance, Control, and Dynamics, 1991, 14, 59-67.	1.6	9
144	Transient finite element computations on 65536 processors: The connection machine. International Journal for Numerical Methods in Engineering, 1990, 30, 27-55.	1.5	34

#	Article	IF	Citations
145	Explicit-implicit staggered procedure for multibody dynamics analysis. Journal of Guidance, Control, and Dynamics, 1990, 13, 562-570.	1.6	41
146	Structural tailoring and feedback control synthesis - An interdisciplinary approach. Journal of Guidance, Control, and Dynamics, 1990, 13, 424-429.	1.6	82
147	Computational Issues in Control-Structure Interaction Analysis. Springer Series in Computational Mechanics, 1988, , 115-131.	0.3	3
148	Stabilization of computational procedures for constrained dynamical systems. Journal of Guidance, Control, and Dynamics, 1988, 11, 365-370.	1.6	104
149	Transient Analysis Methods in Computational Dynamics. Icase/nasa Larc Series, 1988, , 240-267.	0.2	2
150	Partitioned Procedures for Control-Structure Interaction Analysis., 1988,, 1805-1808.		2
151	Solving structural mechanics problems on the caltech hypercube machine. Computer Methods in Applied Mechanics and Engineering, 1987, 61, 161-176.	3.4	37
152	Improved strain interpolation for curved \hat{CA}° elements. International Journal for Numerical Methods in Engineering, 1986, 22, 281-288.	1.5	17
153	A Curved CO Shell Element Based on Assumed Natural-Coordinate Strains. Journal of Applied Mechanics, Transactions ASME, 1986, 53, 278-290.	1.1	236
154	A Family of CO Shell Elements Based on Generalized Hrennikoff's Method and Assumed Natural-Coordinate Strains. , 1986, , 265-282.		1
155	A uniformly reduced, four-noded CO-shell element with consistent rank corrections. Computers and Structures, 1985, 20, 129-139.	2.4	17
156	A symbolic fourier synthesis of a one-point integrated quadrilateral plate element. Computer Methods in Applied Mechanics and Engineering, 1985, 48, 203-236.	3.4	22
157	A UNIFORMLY REDUCED, FOUR-NODED CO-SHELL ELEMENT WITH CONSISTENT RANK CORRECTIONS. , 1985, , 129-139.		0
158	Locking, spurious mechanisms, and pressure divergence in penalty finite element methods for Stokes flow problems. Computer Methods in Applied Mechanics and Engineering, 1984, 47, 315-330.	3.4	5
159	A Fourier analysis of spurious mechanisms and locking in the finite element method. Computer Methods in Applied Mechanics and Engineering, 1984, 46, 65-81.	3.4	39
160	An operational procedure for the symbolic analysis of the finite element method. Computer Methods in Applied Mechanics and Engineering, 1984, 42, 37-46.	3.4	23
161	Stabilization of partitioned solution procedure for pore fluid-soil interaction analysis. International Journal for Numerical Methods in Engineering, 1983, 19, 1669-1673.	1.5	70
162	Nonlinear Dynamic Phenomena in the Space Shuttle Thermal Protection System. Journal of Spacecraft and Rockets, 1982, 19, 269-277.	1.3	4

#	Article	lF	Citations
163	An Improved Semi-Implicit Method for Structural Dynamics Analysis. Journal of Applied Mechanics, Transactions ASME, 1982, 49, 589-593.	1.1	8
164	Semi-implicit transient analysis procedures for structural dynamics analysis. International Journal for Numerical Methods in Engineering, 1982, 18, 609-622.	1.5	15
165	A family of solution algorithms for nonlinear structural analysis based on relaxation equations. International Journal for Numerical Methods in Engineering, 1982, 18, 1337-1347.	1.5	23
166	Stint/CD: A stand-alone explicit time integration package for structural dynamics analysis. International Journal for Numerical Methods in Engineering, 1981, 17, 1285-1312.	1.5	2
167	Partitioned Transient Analysis Procedures for Coupled-Field Problems: Accuracy Analysis. Journal of Applied Mechanics, Transactions ASME, 1980, 47, 919-926.	1.1	57
168	Staggered transient analysis procedures for coupled mechanical systems: Formulation. Computer Methods in Applied Mechanics and Engineering, 1980, 24, 61-111.	3.4	214
169	A variable-step central difference method for structural dynamics analysis- part 2. Implementation and performance evaluation. Computer Methods in Applied Mechanics and Engineering, 1980, 23, 259-279.	3.4	26
170	A variable-step central difference method for structural dynamics analysis â€" part 1. Theoretical aspects. Computer Methods in Applied Mechanics and Engineering, 1980, 22, 241-258.	3.4	56
171	Partitioned Transient Analysis Procedures for Coupled-Field Problems: Stability Analysis. Journal of Applied Mechanics, Transactions ASME, 1980, 47, 370-376.	1.1	115
172	Direct time integration methods in nonlinear structural dynamics. Computer Methods in Applied Mechanics and Engineering, 1979, 17-18, 277-313.	3.4	46
173	Computational Aspects of Time Integration Procedures in Structural Dynamicsâ€"Part 1: Implementation. Journal of Applied Mechanics, Transactions ASME, 1978, 45, 595-602.	1.1	30
174	Computational Aspects of Time Integration Procedures in Structural Dynamics—Part 2: Error Propagation. Journal of Applied Mechanics, Transactions ASME, 1978, 45, 603-611.	1.1	10
175	Practical aspects of numerical time integration. Computers and Structures, 1977, 7, 343-353.	2.4	75
176	A Simplified Technique for Prediction of Collapse Modes in Crash-Impacted Structural Systems. Journal of Engineering for Industry, 1976, 98, 902-908.	0.8	0
177	An Improved Stiffly Stable Method for Direct Integration of Nonlinear Structural Dynamic Equations. Journal of Applied Mechanics, Transactions ASME, 1975, 42, 464-470.	1.1	210
178	A unified approach for local resolution of kinematic redundancy with inequality constraints and its application to nuclear power plant. , 0 , , .		8
179	A Partitioned Formulation for FEM/BEM Coupling in Contact Problems Using Localized Lagrange Multipliers. Key Engineering Materials, 0, 618, 23-48.	0.4	0