Martin M Williams

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5412109/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Do microorganisms influence seed-bank dynamics?. Weed Science, 2006, 54, 575-587.	1.5	126
2	Planting date influences critical period of weed control in sweet corn. Weed Science, 2006, 54, 928-933.	1.5	63
3	Environmental factors affecting seed persistence of annual weeds across the U.S. corn belt. Weed Science, 2005, 53, 860-868.	1.5	62
4	A Common Genetic Basis in Sweet Corn Inbred Cr1 for Cross Sensitivity to Multiple Cytochrome P450-Metabolized Herbicides. Weed Science, 2008, 56, 376-382.	1.5	47
5	The Fitness Cost of Triazine Resistance in Jimsonweed (Datura stramonium L.). American Midland Naturalist, 1995, 133, 131.	0.4	41
6	Factors Affecting Differential Sensitivity of Sweet Corn to HPPD-Inhibiting Herbicides. Weed Science, 2010, 58, 289-294.	1.5	36
7	Lack of transgene and glyphosate effects on yield, and mineral and amino acid content of glyphosateâ€resistant soybean. Pest Management Science, 2018, 74, 1166-1173.	3.4	35
8	Genetic Basis for Varied Levels of Injury to Sweet Corn Hybrids from Three Cytochrome P450-metabolized Herbicides. Journal of the American Society for Horticultural Science, 2008, 133, 438-447.	1.0	34
9	Functional relationships between giant ragweed (Ambrosia trifida) interference and sweet corn yield and ear traits. Weed Science, 2006, 54, 948-953.	1.5	33
10	Soil Microbial Communities in Diverse Agroecosystems Exposed to the Herbicide Glyphosate. Applied and Environmental Microbiology, 2020, 86, .	3.1	33
11	Agronomics and economics of plant population density on processing sweet corn. Field Crops Research, 2012, 128, 55-61.	5.1	31
12	Changes in field workability and drought risk from projected climate change drive spatially variable risks in Illinois cropping systems. PLoS ONE, 2017, 12, e0172301.	2.5	31
13	Significance of Atrazine in Sweet Corn Weed Management Systems. Weed Technology, 2010, 24, 139-142.	0.9	30
14	Site-Specific Weed Control in Maize, Sugar Beet, Winter Wheat, and Winter Barley. Precision Agriculture, 2002, 3, 25-35.	6.0	29
15	Principal Canopy Factors of Sweet Corn and Relationships to Competitive Ability with Wild-Proso Millet (<i>Panicum miliaceum</i>). Weed Science, 2009, 57, 296-303.	1.5	29
16	How good is your weed map? A comparison of spatial interpolators. Weed Science, 2003, 51, 44-55.	1.5	27
17	Influence of Planting Date and Weed Interference on Sweet Corn Growth and Development. Agronomy Journal, 2007, 99, 1066-1072.	1.8	27
18	Genetic Basis of Sensitivity in Sweet Corn to Tembotrione. Weed Science, 2008, 56, 364-370.	1.5	27

#	Article	IF	CITATIONS
19	Potential of Phomopsis amaranthicola and Microsphaeropsis amaranthi, as bioherbicides for several weedy Amaranthus species. Crop Protection, 2006, 25, 39-46.	2.1	26
20	Residual Weeds of Processing Sweet Corn in the North Central Region. Weed Technology, 2008, 22, 646-653.	0.9	25
21	Phenomorphological Characterization of Vegetable Soybean Germplasm Lines for Commercial Production. Crop Science, 2015, 55, 1274-1279.	1.8	25
22	Cross-sensitivity in Sweet Corn to Nicosulfuron and Mesotrione Applied Postemergence. Hortscience: A Publication of the American Society for Hortcultural Science, 2005, 40, 1801-1805.	1.0	25
23	Expression and comparison of sweet corn <scp>CYP81A9s</scp> in relation to nicosulfuron sensitivity. Pest Management Science, 2020, 76, 3012-3019.	3.4	24
24	Crop competitive ability contributes to herbicide performance in sweet corn. Weed Research, 2008, 48, 58-67.	1.7	23
25	Towards a No-Till No-Spray Future? Introduction to a Symposium on Nonchemical Weed Management for Reduced-Tillage Cropping Systems. Weed Technology, 2013, 27, 190-192.	0.9	23
26	Significance of Atrazine as a Tank-Mix Partner with Tembotrione. Weed Technology, 2011, 25, 299-302.	0.9	22
27	Wild Proso Millet (Panicum miliaceum) Suppressive Ability among Three Sweet Corn Hybrids. Weed Science, 2007, 55, 245-251.	1.5	21
28	Sweet Corn Growth and Yield Responses to Planting Dates of the North Central United States. Hortscience: A Publication of the American Society for Hortcultural Science, 2008, 43, 1775-1779.	1.0	21
29	Performance consistency of reduced atrazine use in sweet corn. Field Crops Research, 2011, 121, 96-104.	5.1	20
30	Linkages among agronomic, environmental and weed management characteristics in North American sweet corn. Field Crops Research, 2009, 113, 161-169.	5.1	19
31	Genetic Factors Influencing Adverse Effects of Mesotrione and Nicosulfuron on Sweet Corn Yield. Agronomy Journal, 2010, 102, 1138-1144.	1.8	18
32	Differential Tolerance in Sweet Corn to Wild-proso Millet (Panicum Miliaceum) Interference. Weed Science, 2008, 56, 91-96.	1.5	17
33	Inheritance of Cross-sensitivity in Sweet Corn to Herbicides Applied Postemergence. Journal of the American Society for Horticultural Science, 2006, 131, 744-751.	1.0	17
34	Vegetable Soybean Tolerance to Bentazon, Fomesafen, Imazamox, Linuron, and Sulfentrazone. Weed Technology, 2014, 28, 601-607.	0.9	15
35	Glyphosate Resistance Technology Has Minimal or No Effect on Maize Mineral Content and Yield. Journal of Agricultural and Food Chemistry, 2018, 66, 10139-10146.	5.2	15
36	Diminishing weed control exacerbates maize yield loss to adverse weather. Global Change Biology, 2021, 27, 6156-6165.	9.5	15

#	Article	IF	CITATIONS
37	Goss's Wilt Incidence in Sweet Corn Is Independent of Transgenic Traits and Glyphosate. Hortscience: A Publication of the American Society for Hortcultural Science, 2015, 50, 1791-1794.	1.0	15
38	Integrating arthropod herbivory and reduced herbicide use for weed management. Weed Science, 2004, 52, 1018-1025.	1.5	14
39	Combined effects ofAceria malherbaeand herbicides on field bindweed (Convolvulus arvensis) growth. Weed Science, 2004, 52, 297-301.	1.5	14
40	Effect of volunteer potato density on bulb onion yield and quality. Weed Science, 2004, 52, 754-758.	1.5	14
41	Managing Volunteer Potato (Solanum tuberosum) in Field Corn with Mesotrione and Arthropod Herbivory. Weed Technology, 2005, 19, 443-450.	0.9	14
42	Volunteer potato interference in carrot. Weed Science, 2006, 54, 94-99.	1.5	14
43	Few crop traits accurately predict variables important to productivity of processing sweet corn. Field Crops Research, 2014, 157, 20-26.	5.1	14
44	Optimum plant density for crowding stress tolerant processing sweet corn. PLoS ONE, 2019, 14, e0223107.	2.5	14
45	Understanding variability in optimum plant density and recommendation domains for crowding stress tolerant processing sweet corn. PLoS ONE, 2020, 15, e0228809.	2.5	14
46	Further Evidence of a Genetic Basis for Varied Levels of Injury to Sweet Corn Hybrids from Cytochrome P450-metabolized Herbicides Applied Postemergence. Hortscience: A Publication of the American Society for Hortcultural Science, 2008, 43, 2093-2097.	1.0	14
47	Future efficacy of preâ€emergence herbicides in corn (<scp><i>Zea mays</i></scp>) is threatened by more variable weather. Pest Management Science, 2021, 77, 2683-2689.	3.4	13
48	Canopy Variation Among Three Sweet Corn Hybrids and Implications for Light Competition. Hortscience: A Publication of the American Society for Hortcultural Science, 2006, 41, 1449-1454.	1.0	13
49	Conidial germination and germ tube elongation of Phomopsis amaranthicola and Microsphaeropsis amaranthi on leaf surfaces of seven Amaranthus species: Implications for biological control. Biological Control, 2006, 38, 356-362.	3.0	12
50	Within-Season Changes in the Residual Weed Community and Crop Tolerance to Interference over the Long Planting Season of Sweet Corn. Weed Science, 2009, 57, 319-325.	1.5	12
51	Observations from a Quarter Century of Evaluating Reactions of Sweet Corn Hybrids in Disease Nurseries. Plant Disease, 2011, 95, 1492-1506.	1.4	12
52	Crop Seeding Level: Implications for Weed Management in Sweet Corn. Weed Science, 2013, 61, 437-442.	1.5	12
53	Identification of Crowding Stress Tolerance Co-Expression Networks Involved in Sweet Corn Yield. PLoS ONE, 2016, 11, e0147418.	2.5	12
54	Alternatives to Atrazine for Weed Management in Processing Sweet Corn. Weed Science, 2016, 64, 531-539.	1.5	12

#	Article	IF	CITATIONS
55	Relationships among phenotypic traits of sweet corn and tolerance to crowding stress. Field Crops Research, 2016, 185, 45-50.	5.1	12
56	Photosystem Ilâ€Inhibitors Play a Limited Role in Sweet Corn Response to 4â€Hydroxyphenyl Pyruvate Dioxygenaseâ€Inhibiting Herbicides. Agronomy Journal, 2014, 106, 1317-1323.	1.8	11
57	Identifying Crowding Stressâ€Tolerant Hybrids in Processing Sweet Corn. Agronomy Journal, 2015, 107, 1782-1788.	1.8	11
58	Soybean density and Palmer amaranth (<i>Amaranthus palmeri</i>) establishment time: effects on weed biology, crop yield, and economic returns. Weed Science, 2020, 68, 467-475.	1.5	11
59	Wild-Proso Millet Differentially Affects Canopy Architecture and Yield Components of 25 Sweet Corn Hybrids. Hortscience: A Publication of the American Society for Hortcultural Science, 2009, 44, 408-412.	1.0	11
60	Title is missing!. Precision Agriculture, 2000, 2, 247-263.	6.0	10
61	Variation in Wild Proso Millet (<i>Panicum miliaceum</i>) Fecundity in Sweet Corn Has Residual Effects in Snap Bean. Weed Science, 2007, 55, 502-507.	1.5	10
62	Optimization of Agricultural Field Workability Predictions for Improved Risk Management. Agronomy Journal, 2015, 107, 627-633.	1.8	10
63	Deteriorating weed control and variable weather portends greater soybean yield losses in the future. Science of the Total Environment, 2022, 830, 154764.	8.0	10
64	Alternative to Hand-Weeding Volunteer Potato (Solanum tuberosum) in Carrot (Daucus carota)1. Weed Technology, 2005, 19, 1050-1055.	0.9	9
65	Volunteer Potato Density Influences Critical Time of Weed Removal in Bulb Onion. Weed Technology, 2007, 21, 136-140.	0.9	9
66	Maternal Corn Environment Influences Wild-Proso Millet (Panicum miliaceum) Seed Characteristics. Weed Science, 2012, 60, 69-74.	1.5	9
67	Crop/Weed Outcomes from Site-Specific and Uniform Soil-Applied Herbicide Applications. Precision Agriculture, 2000, 2, 377-388.	6.0	8
68	Biological Significance of Low Weed Population Densities on Sweet Corn. Agronomy Journal, 2010, 102, 464-468.	1.8	8
69	Interactions between maize dwarf mosaic and weed interference on sweet corn. Field Crops Research, 2012, 128, 48-54.	5.1	8
70	No-till snap bean performance and weed response following rye and vetch cover crops. Renewable Agriculture and Food Systems, 2017, 32, 463-473.	1.8	8
71	Duration of volunteer potato (Solanum tuberosum) interference in bulb onion. Weed Science, 2005, 53, 62-68.	1.5	7
72	Managing Weeds in Commercial Edamame Production: Current Options and Implications. Weed Science, 2015, 63, 954-961.	1.5	7

#	Article	IF	CITATIONS
73	Weed Seedling Population Responses to a Method of Site-Specific Weed Management. Assa, Cssa and Sssa, 2015, , 123-132.	0.6	5
74	An Early-Killed Rye (<i>Secale cereale</i>) Cover Crop Has Potential for Weed Management in Edamame (<i>Glycine max</i>). Weed Science, 2018, 66, 502-507.	1.5	5
75	Planting Depth and Seed Size Affect Edamame Emergence Individually. Hortscience: A Publication of the American Society for Hortcultural Science, 2019, 54, 92-94.	1.0	5
76	Historical Trends in Sweet Corn Plant Density Tolerance Using Era Hybrids (1930–2010s). Frontiers in Plant Science, 2021, 12, 707852.	3.6	4
77	A bioenergy feedstock/vegetable double-cropping system. Industrial Crops and Products, 2014, 59, 223-227.	5.2	3
78	Sweet corn hybrid tolerance to weed competition under three weed management levels. Renewable Agriculture and Food Systems, 2016, 31, 281-287.	1.8	3
79	Vegetable Soybean Tolerance to Pyroxasulfone. Weed Technology, 2017, 31, 416-420.	0.9	3
80	Reproductive Sink of Sweet Corn in Response to Plant Density and Hybrid. Hortscience: A Publication of the American Society for Hortcultural Science, 2018, 53, 28-32.	1.0	3
81	Economically Optimal Plant Density for Machine-harvested Edamame. Hortscience: A Publication of the American Society for Hortcultural Science, 2020, 55, 368-373.	1.0	3
82	Maize Dwarf Mosaic Can Reduce Weed Suppressive Ability of Sweet Corn. Weed Science, 2012, 60, 577-582.	1.5	2
83	Intraspecific and Interspecific Competition in Sweet Corn. Agronomy Journal, 2013, 105, 503-508.	1.8	2
84	Genotype Adoption in Processing Sweet Corn Relates to Stability in Case Production. Hortscience: A Publication of the American Society for Hortcultural Science, 2017, 52, 1748-1754.	1.0	2
85	Fludioxonil + Mefenoxam Seed Treatment Improves Edamame Seedling Emergence. HortTechnology, 2017, 27, 846-851.	0.9	2
86	Role of Edamame (Glycine max) Seed Size in Early-Season Crop–Weed Interactions. Weed Science, 2018, 66, 746-751.	1.5	2
87	Economic optimum plant density of sweet corn does not increase root lodging incidence. Crop Science, 2021, 61, 3637-3646.	1.8	2
88	Vegetable soybean tolerance to flumioxazin-based treatments for waterhemp control is similar to grain-type soybean. Weed Technology, 2019, 33, 530-534.	0.9	1
89	Integrated weed management strategies with cereal rye mulch in processing vegetable legumes. Agronomy Journal, 2020, 112, 4264-4275.	1.8	1
90	Transcriptional analysis of sweet corn hybrids in response to crowding stress. PLoS ONE, 2021, 16, e0253190.	2.5	1

#	Article	IF	CITATIONS
91	Significance of application timing, formulation, and cytochrome P450 genotypic class on sweet corn response to dicamba. Weed Science, 0, , 1-7.	1.5	1
92	Response of Annual Weeds to Glyphosate: Evaluation and Optimization of Application Rate Based on Fecundity-Avoidance Biomass Threshold Criterion. Agronomy, 2019, 9, 851.	3.0	0