Richard W Farndale

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/541208/publications.pdf Version: 2024-02-01

		31976	28297
128	11,429	53	105
papers	citations	h-index	g-index
100	122	100	10150
132	132	132	12152
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The voltage-gated K ⁺ channel Kv1.3 modulates platelet motility and α ₂ β ₁ integrin-dependent adhesion to collagen. Platelets, 2022, 33, 1-11.	2.3	3
2	Platelet surface receptor glycoprotein VI-dimer is overexpressed in stroke: The Glycoprotein VI in Stroke (GYPSIE) study results. PLoS ONE, 2022, 17, e0262695.	2.5	13
3	Structural insights into collagen binding by platelet receptor glycoprotein VI. Blood, 2022, 139, 3087-3098.	1.4	15
4	Tyrosine-sulfated dermatopontin shares multiple binding sites and recognition determinants on triple-helical collagens with proteins implicated in cell adhesion and collagen folding, fibrillogenesis, cross-linking, and degradation. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2022, 1870, 140771.	2.3	3
5	Factor XIII is a newly identified binding partner for platelet collagen receptor GPVIâ€dimer—An interaction that may modulate fibrin crosslinking. Research and Practice in Thrombosis and Haemostasis, 2022, 6, e12697.	2.3	5
6	Nonredundant Roles of Platelet Glycoprotein VI and Integrin αIIbβ3 in Fibrin-Mediated Microthrombus Formation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, e97-e111.	2.4	22
7	Multimerin 1 supports platelet function in vivo and binds to specific GPAGPOGPX motifs in fibrillar collagens that enhance platelet adhesion. Journal of Thrombosis and Haemostasis, 2021, 19, 547-561.	3.8	15
8	Modulating hESC-derived cardiomyocyte and endothelial cell function with triple-helical peptides for heart tissue engineering. Biomaterials, 2021, 269, 120612.	11.4	5
9	Dimers of the platelet collagen receptor glycoprotein VI bind specifically to fibrin fibers during clot formation, but not to intact fibrinogen. Journal of Thrombosis and Haemostasis, 2021, 19, 2056-2067.	3.8	10
10	Identification of HSP47 Binding Site on Native Collagen and Its Implications for the Development of HSP47 Inhibitors. Biomolecules, 2021, 11, 983.	4.0	9
11	Tailoring the biofunctionality of collagen biomaterials via tropoelastin incorporation and EDC-crosslinking. Acta Biomaterialia, 2021, 135, 150-163.	8.3	6
12	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Catalytic receptors. British Journal of Pharmacology, 2021, 178, S264-S312.	5.4	148
13	Selectivity of the collagen-binding integrin inhibitors, TC-I-15 and obtustatin. Toxicology and Applied Pharmacology, 2021, 428, 115669.	2.8	8
14	Chain alignment of collagen I deciphered using computationally designed heterotrimers. Nature Chemical Biology, 2020, 16, 423-429.	8.0	24
15	Cleavage by MMPâ€13 renders VWF unable to bind to collagen but increases its platelet reactivity. Journal of Thrombosis and Haemostasis, 2020, 18, 942-954.	3.8	9
16	Collagen scaffolds functionalized with triple-helical peptides support 3D HUVEC culture. International Journal of Energy Production and Management, 2020, 7, 471-482.	3.7	11
17	Platelet-primed interactions of coagulation and anticoagulation pathways in flow-dependent thrombus formation. Scientific Reports, 2020, 10, 11910.	3.3	21
18	Mild hyperlipidemia in mice aggravates platelet responsiveness in thrombus formation and exploration of platelet proteome and lipidome. Scientific Reports, 2020, 10, 21407.	3.3	13

#	Article	IF	CITATIONS
19	Collagen-binding proteins: insights from the Collagen Toolkits. Essays in Biochemistry, 2019, 63, 337-348.	4.7	19
20	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Catalytic receptors. British Journal of Pharmacology, 2019, 176, S247-S296.	5.4	156
21	Impact of UV- and carbodiimide-based crosslinking on the integrin-binding properties of collagen-based materials. Acta Biomaterialia, 2019, 100, 280-291.	8.3	33
22	Covalent Capture of a Heterotrimeric Collagen Helix. Organic Letters, 2019, 21, 5480-5484.	4.6	17
23	Role of Platelet Glycoprotein VI and Tyrosine Kinase Syk in Thrombus Formation on Collagen-Like Surfaces. International Journal of Molecular Sciences, 2019, 20, 2788.	4.1	28
24	A Comprehensive UHPLC Ion Mobility Quadrupole Time-of-Flight Method for Profiling and Quantification of Eicosanoids, Other Oxylipins, and Fatty Acids. Analytical Chemistry, 2019, 91, 8025-8035.	6.5	40
25	Data on hyper-activation of GPVI signalling in obese patients: Towards the identification of novel antiplatelet targets in obesity. Data in Brief, 2019, 23, 103784.	1.0	3
26	Structural studies of the MMP-3 interaction with triple-helical collagen introduce new roles for the enzyme in tissue remodelling. Scientific Reports, 2019, 9, 18785.	3.3	31
27	Cellular response to collagen-elastin composite materials. Acta Biomaterialia, 2019, 86, 158-170.	8.3	20
28	GPVI surface expression and signalling pathway activation are increased in platelets from obese patients: Elucidating potential anti-atherothrombotic targets in obesity. Atherosclerosis, 2019, 281, 62-70.	0.8	35
29	Integrins (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	0
30	Anti-thrombotic efficacy of S007-867: Pre-clinical evaluation in experimental models of thrombosis in vivo and in vitro. Biochemical Pharmacology, 2018, 148, 288-297.	4.4	10
31	Selecting the correct cellular model for assessing of the biological response of collagen-based biomaterials. Acta Biomaterialia, 2018, 65, 88-101.	8.3	33
32	Proline provides site-specific flexibility for in vivo collagen. Scientific Reports, 2018, 8, 13809.	3.3	40
33	Thrombospondin-1 promotes matrix homeostasis by interacting with collagen and lysyl oxidase precursors and collagen cross-linking sites. Science Signaling, 2018, 11, .	3.6	70
34	Collagen Gly missense mutations: Effect of residue identity on collagen structure and integrin binding. Journal of Structural Biology, 2018, 203, 255-262.	2.8	26
35	Coupling of a specific photoreactive triple-helical peptide to crosslinked collagen films restores binding and activation of DDR2 and VWF. Biomaterials, 2018, 182, 21-34.	11.4	16
36	Fundamental insight into the effect of carbodiimide crosslinking on cellular recognition of collagen-based scaffolds. Acta Biomaterialia, 2017, 49, 218-234.	8.3	114

#	Article	IF	CITATIONS
37	Structural and functional analysis of two small leucine-rich repeat proteoglycans, fibromodulin and chondroadherin. Matrix Biology, 2017, 63, 106-116.	3.6	33
38	Unique charge-dependent constraint on collagen recognition by integrin α10β1. Matrix Biology, 2017, 59, 80-94.	3.6	15
39	Fibromodulin Interacts with Collagen Cross-linking Sites and Activates Lysyl Oxidase. Journal of Biological Chemistry, 2016, 291, 7951-7960.	3.4	77
40	Structural basis for collagen recognition by the immune receptor OSCAR. Blood, 2016, 127, 529-537.	1.4	45
41	Evaluation of cell binding to collagen and gelatin: a study of the effect of 2D and 3D architecture and surface chemistry. Journal of Materials Science: Materials in Medicine, 2016, 27, 148.	3.6	309
42	Intrinsic local destabilization of the Câ€ŧerminus predisposes integrin α1 l domain to a conformational switch induced by collagen binding. Protein Science, 2016, 25, 1672-1681.	7.6	4
43	Mapping the Effect of Cly Mutations in Collagen on α2β1 Integrin Binding. Journal of Biological Chemistry, 2016, 291, 19196-19207.	3.4	21
44	Zinc is a transmembrane agonist that induces platelet activation in a tyrosine phosphorylation-dependent manner. Metallomics, 2016, 8, 91-100.	2.4	33
45	The synthesis and coupling of photoreactive collagen-based peptides to restore integrin reactivity to an inert substrate, chemically-crosslinked collagen. Biomaterials, 2016, 85, 65-77.	11.4	38
46	Optimisation of UV irradiation as a binding site conserving method for crosslinking collagen-based scaffolds. Journal of Materials Science: Materials in Medicine, 2016, 27, 14.	3.6	73
47	Recombinant Collagen Engineered to Bind to Discoidin Domain Receptor Functions as a Receptor Inhibitor. Journal of Biological Chemistry, 2016, 291, 4343-4355.	3.4	30
48	Hydroxyproline Ring Pucker Causes Frustration of Helix Parameters in the Collagen Triple Helix. Scientific Reports, 2015, 5, 12556.	3.3	30
49	Differential Inhibition of Human Atherosclerotic Plaque–Induced Platelet Activation by Dimeric GPVI-Fc and Anti-GPVI Antibodies. Journal of the American College of Cardiology, 2015, 65, 2404-2415.	2.8	47
50	Dynamic analysis of platelet deposition to resolve platelet adhesion receptor activity in whole blood at arterial shear rate. Platelets, 2015, 26, 216-219.	2.3	15
51	A fluorescent approach for identifying P2X1 ligands. Neuropharmacology, 2015, 98, 13-21.	4.1	9
52	New Insights into the DT40 B Cell Receptor Cluster Using a Proteomic Proximity Labeling Assay. Journal of Biological Chemistry, 2014, 289, 14434-14447.	3.4	110
53	The Recognition of Collagen and Triple-helical Toolkit Peptides by MMP-13. Journal of Biological Chemistry, 2014, 289, 24091-24101.	3.4	43
54	NMR Spectroscopy of Native and in Vitro Tissues Implicates PolyADP Ribose in Biomineralization. Science, 2014, 344, 742-746.	12.6	78

#	Article	IF	CITATIONS
55	Identification of platelet function defects by multi-parameter assessment of thrombus formation. Nature Communications, 2014, 5, 4257.	12.8	191
56	Platelets release mitochondria serving as substrate for bactericidal group IIA-secreted phospholipase A2 to promote inflammation. Blood, 2014, 124, 2173-2183.	1.4	513
57	Integrin Recognition Motifs in the Human Collagens. Advances in Experimental Medicine and Biology, 2014, 819, 127-142.	1.6	50
58	Measurement of the Interaction Between Recombinant I-domain from Integrin alpha 2 beta 1 and a Triple Helical Collagen Peptide with the GFOGER Binding Motif Using Molecular Force Spectroscopy. International Journal of Molecular Sciences, 2013, 14, 2832-2845.	4.1	8
59	Targeted Phosphotyrosine Profiling of Glycoprotein VI Signaling Implicates Oligophrenin-1 in Platelet Filopodia Formation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1538-1543.	2.4	19
60	An Activating Mutation Reveals a Second Binding Mode of the Integrin α2 I Domain to the GFOGER Motif in Collagens. PLoS ONE, 2013, 8, e69833.	2.5	29
61	A Simple Bioconjugate Attachment Protocol for Use in Single Molecule Force Spectroscopy Experiments Based on Mixed Self-Assembled Monolayers. International Journal of Molecular Sciences, 2012, 13, 13521-13541.	4.1	8
62	Constitutive Dimerization of Glycoprotein VI (GPVI) in Resting Platelets Is Essential for Binding to Collagen and Activation in Flowing Blood. Journal of Biological Chemistry, 2012, 287, 30000-30013.	3.4	84
63	Implications for collagen I chain registry from the structure of the collagen von Willebrand factor A3 domain complex. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5253-5258.	7.1	69
64	Structural insights into triple-helical collagen cleavage by matrix metalloproteinase 1. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12461-12466.	7.1	185
65	Mapping of Potent and Specific Binding Motifs, GLOGEN and GVOGEA, for Integrin α1β1 Using Collagen Toolkits II and III. Journal of Biological Chemistry, 2012, 287, 26019-26028.	3.4	57
66	Effects of lipid-lowering treatment on platelet reactivity and platelet-leukocyte aggregation in diabetic patients without and with chronic kidney disease: a randomized trial. Nephrology Dialysis Transplantation, 2012, 27, 3540-3546.	0.7	13
67	The properties conferred upon triple-helical collagen-mimetic peptides by the presence of cysteine residues. Peptides, 2012, 36, 86-93.	2.4	10
68	Crosslinking and composition influence the surface properties, mechanical stiffness and cell reactivity of collagen-based films. Acta Biomaterialia, 2012, 8, 3080-3090.	8.3	181
69	The impact of factor Xa inhibition on axial dependent arterial thrombus formation triggered by a tissue factor rich surface. Journal of Thrombosis and Thrombolysis, 2012, 33, 6-15.	2.1	2
70	Discoidin Domain Receptors Promote α1β1- and α2β1-Integrin Mediated Cell Adhesion to Collagen by Enhancing Integrin Activation. PLoS ONE, 2012, 7, e52209.	2.5	122
71	Collagen binding specificity of the discoidin domain receptors: Binding sites on collagens II and III and molecular determinants for collagen IV recognition by DDR1. Matrix Biology, 2011, 30, 16-26.	3.6	152
72	A role for specific collagen motifs during wound healing and inflammatory response of fibroblasts in the teleost fish gilthead seabream. Molecular Immunology, 2011, 48, 826-834.	2.2	48

#	Article	IF	CITATIONS
73	Hydroxyproline-containing collagen analogs trigger the release and activation of collagen-sequestered proMMP-2 by competition with prodomain-derived peptide P33-42. Fibrogenesis and Tissue Repair, 2011, 4, 1.	3.4	20
74	The effect of purity upon the triple-helical stability of collagenous peptides. Biomaterials, 2011, 32, 6621-6632.	11.4	10
75	OSCAR is a collagen receptor that costimulates osteoclastogenesis in DAP12-deficient humans and mice. Journal of Clinical Investigation, 2011, 121, 3505-3516.	8.2	177
76	Crystal structure and collagen-binding site of immune inhibitory receptor LAIR-1: unexpected implications for collagen binding by platelet receptor GPVI. Blood, 2010, 115, 1364-1373.	1.4	62
77	Synergism between platelet collagen receptors defined using receptor-specific collagen-mimetic peptide substrata in flowing blood. Blood, 2010, 115, 5069-5079.	1.4	97
78	First Analysis of a Bacterial Collagen-Binding Protein with Collagen Toolkits: Promiscuous Binding of YadA to Collagens May Explain How YadA Interferes with Host Processes. Infection and Immunity, 2010, 78, 3226-3236.	2.2	37
79	Implications for Collagen Binding from the Crystallographic Structure of Fibronectin 6FnI1–2FnII7FnI. Journal of Biological Chemistry, 2010, 285, 33764-33770.	3.4	30
80	The Streptococcal Collagen-binding Protein CNE Specifically Interferes with αVβ3-mediated Cellular Interactions with Triple Helical Collagen. Journal of Biological Chemistry, 2010, 285, 35803-35813.	3.4	11
81	A 2-Step Mechanism of Arterial Thrombus Formation Induced by Human Atherosclerotic Plaques. Journal of the American College of Cardiology, 2010, 55, 1147-1158.	2.8	156
82	Platelets Amplify Inflammation in Arthritis via Collagen-Dependent Microparticle Production. Science, 2010, 327, 580-583.	12.6	948
83	Structural Insights into the Interactions between Platelet Receptors and Fibrillar Collagen. Journal of Biological Chemistry, 2009, 284, 19781-19785.	3.4	100
84	Identification and structural analysis of type I collagen sites in complex with fibronectin fragments. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4195-4200.	7.1	77
85	Crystallographic Insight into Collagen Recognition by Discoidin Domain Receptor 2. Structure, 2009, 17, 1573-1581.	3.3	121
86	Platelet glycoprotein VI as a mediator of metastasis. Journal of Thrombosis and Haemostasis, 2009, 7, 1711-1712.	3.8	6
87	Identification of multiple potent binding sites for human leukocyte associated Ig-like receptor LAIR on collagens II and III. Matrix Biology, 2009, 28, 202-210.	3.6	88
88	Characterization of High Affinity Binding Motifs for the Discoidin Domain Receptor DDR2 in Collagen. Journal of Biological Chemistry, 2008, 283, 6861-6868.	3.4	170
89	Cell–collagen interactions: the use of peptide Toolkits to investigate collagen–receptor interactions. Biochemical Society Transactions, 2008, 36, 241-250.	3.4	170
90	Structural basis of sequence-specific collagen recognition by SPARC. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18273-18277.	7.1	123

#	Article	IF	CITATIONS
91	Chondrocyte Aggregation in Suspension Culture Is GFOGER-GPP- and \hat{I}^21 Integrin-dependent. Journal of Biological Chemistry, 2008, 283, 31522-31530.	3.4	45
92	Mapping of SPARC/BM-40/Osteonectin-binding Sites on Fibrillar Collagens. Journal of Biological Chemistry, 2008, 283, 19551-19560.	3.4	87
93	Identification of a major GpVI-binding locus in human type III collagen. Blood, 2008, 111, 4986-4996.	1.4	63
94	Structural Basis for the Platelet-Collagen Interaction. Journal of Biological Chemistry, 2007, 282, 1296-1304.	3.4	113
95	Analysis of an ascidian integrin provides new insight into early evolution of collagen recognition. FEBS Letters, 2007, 581, 2434-2440.	2.8	12
96	Collagen-induced platelet activation. Blood Cells, Molecules, and Diseases, 2006, 36, 162-165.	1.4	94
97	A single high-affinity binding site for von Willebrand factor in collagen III, identified using synthetic triple-helical peptides. Blood, 2006, 108, 3753-3756.	1.4	112
98	Collagens are functional, high affinity ligands for the inhibitory immune receptor LAIR-1. Journal of Experimental Medicine, 2006, 203, 1419-1425.	8.5	278
99	Use of Synthetic Peptides to Locate Novel Integrin α2β1-binding Motifs in Human Collagen III. Journal of Biological Chemistry, 2006, 281, 3821-3831.	3.4	162
100	Selective Blockade of Glycoprotein VI Clustering on Collagen Helices. Journal of Biological Chemistry, 2006, 281, 33505-33510.	3.4	26
101	Increased Bleeding Tendency in a Patient with Caffey Disease Due to a COL1A1 Mutation and a Defect in Platelet Morphology and Function Blood, 2005, 106, 736-736.	1.4	0
102	Identification of the von Willebrand Factor Binding Site in Collagen Using Triple Helical Peptides Blood, 2005, 106, 413-413.	1.4	0
103	Measurement of Platelet Arachidonic Acid Metabolism. , 2004, 272, 121-134.		6
104	Integrin Activation State Determines Selectivity for Novel Recognition Sites in Fibrillar Collagens. Journal of Biological Chemistry, 2004, 279, 47763-47772.	3.4	144
105	Structure of the Integrin α2β1-binding Collagen Peptide. Journal of Molecular Biology, 2004, 335, 1019-1028.	4.2	124
106	Platelet receptor interplay regulates collagen-induced thrombus formation in flowing human blood. Blood, 2004, 103, 1333-1341.	1.4	175
107	Identification of the primary collagen-binding surface on human glycoprotein VI by site-directed mutagenesis and by a blocking phage antibody. Blood, 2004, 103, 903-911.	1.4	116
108	α11β1 Integrin Recognizes the GFOGER Sequence in Interstitial Collagens. Journal of Biological Chemistry, 2003, 278, 7270-7277.	3.4	143

#	Article	IF	CITATIONS
109	Prolyl Hydroxylation of Collagen Type I Is Required for Efficient Binding to Integrin $\hat{1}\pm1\hat{1}^21$ and Platelet Glycoprotein VI but Not to $\hat{1}\pm2\hat{1}^21$. Journal of Biological Chemistry, 2003, 278, 29873-29879.	3.4	52
110	Collagen-platelet interactions: recognition and signalling. Biochemical Society Symposia, 2003, 70, 81-94.	2.7	43
111	Platelet receptors: collagen. , 2002, , 158-178.		12
112	Platelet endothelial cell adhesion molecule-1 is a negative regulator of platelet-collagen interactions. Blood, 2001, 98, 1456-1463.	1.4	124
113	Platelet Adhesion Enhances the Glycoprotein Vl–Dependent Procoagulant Response. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 21, 618-627.	2.4	120
114	Monoclonal antibodies identify residues 199–216 of the integrin α2 vWFA domain as a functionally important region within α2β1. Biochemical Journal, 2000, 350, 485-493.	3.7	29
115	The Collagen-binding A-domains of Integrins α1β1 and α2β1Recognize the Same Specific Amino Acid Sequence, GFOGER, in Native (Triple-helical) Collagens. Journal of Biological Chemistry, 2000, 275, 35-40.	3.4	712
116	Micromolar Ca2+ Concentrations Are Essential for Mg2+-dependent Binding of Collagen by the Integrin α2β1 in Human Platelets. Journal of Biological Chemistry, 2000, 275, 24560-24564.	3.4	71
117	Structural Basis of Collagen Recognition by Integrin $\hat{I}\pm 2\hat{I}^21$. Cell, 2000, 101, 47-56.	28.9	911
118	Collagen–platelet interaction: Gly-Pro-Hyp is uniquely specific for platelet Gp VI and mediates platelet activation by collagen. Cardiovascular Research, 1999, 41, 450-457.	3.8	199
119	Monomeric (glycine-proline-hydroxyproline)10 repeat sequence is a partial agonist of the platelet collagen receptor glycoprotein VI. Biochemical Journal, 1999, 339, 413-418.	3.7	56
120	Inhibition of human platelet adenylate cyclase activity by adrenaline, thrombin and collagen: analysis and reinterpretation of experimental data. Biochemical Journal, 1999, 340, 245-253.	3.7	9
121	Identification in Collagen Type I of an Integrin α2β1-binding Site Containing an Essential GER Sequence. Journal of Biological Chemistry, 1998, 273, 33287-33294.	3.4	248
122	Glycoprotein VI Is a Major Collagen Receptor for Platelet Activation: It Recognizes the Platelet-Activating Quaternary Structure of Collagen, Whereas CD36, Glycoprotein IIb/IIIa, and von Willebrand Factor Do Not. Blood, 1998, 91, 491-499.	1.4	309
123	Glycoprotein VI is the collagen receptor in platelets which underlies tyrosine phosphorylation of the Fc receptor γâ€chain. FEBS Letters, 1997, 413, 255-259.	2.8	266
124	Wortmannin inhibits store-mediated calcium entry and protein tyrosine phosphorylation in human platelets. FEBS Letters, 1996, 381, 249-251.	2.8	15
125	Release and activation of platelet latent TGF–β in blood clots during dissolution with plasmin. Nature Medicine, 1995, 1, 932-937.	30.7	207
126	The Tyrosine Kinase Inhibitors, Genistein and Methyl 2,5-Dihydroxycinnamate, Inhibit the Release of (3H)Arachidonate from Human Platelets Stimulated by Thrombin or Collagen. Thrombosis and Haemostasis, 1994, 72, 634-642.	3.4	34

#	Article	IF	CITATIONS
127	The tyrosine kinase inhibitors methyl 2,5-dihydroxycinnamate and genistein reduce thrombin-evoked tyrosine phosphorylation and Ca2+entry in human platelets. FEBS Letters, 1993, 315, 242-246.	2.8	108
128	The role of Gs in activation of adenylate cyclase. Biochemical Society Transactions, 1987, 15, 19-21.	3.4	2