
Markus Rienth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5412038/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Temperature desynchronizes sugar and organic acid metabolism in ripening grapevine fruits and remodels their transcriptome. BMC Plant Biology, 2016, 16, 164.	3.6	192
2	Day and night heat stress trigger different transcriptomic responses in green and ripening grapevine (vitis vinifera) fruit. BMC Plant Biology, 2014, 14, 108.	3.6	170
3	Grape Berry Secondary Metabolites and Their Modulation by Abiotic Factors in a Climate Change Scenario–A Review. Frontiers in Plant Science, 2021, 12, 643258.	3.6	81
4	ldentification of stable QTLs for vegetative and reproductive traits in the microvine (Vitis vinifera L.) using the 18ÂK Infinium chip. BMC Plant Biology, 2015, 15, 205.	3.6	65
5	Is Transcriptomic Regulation of Berry Development More Important at Night than During the Day?. PLoS ONE, 2014, 9, e88844.	2.5	53
6	Biosynthesis and Cellular Functions of Tartaric Acid in Grapevines. Frontiers in Plant Science, 2021, 12, 643024.	3.6	48
7	Microvine : A New Model to Study Grapevine Growth and Developmental Patterns and their Responses to Elevated Temperature. American Journal of Enology and Viticulture, 2017, 68, 283-292.	1.7	41
8	Oregano essential oil vapour prevents Plasmopara viticola infection in grapevine (Vitis Vinifera) and primes plant immunity mechanisms. PLoS ONE, 2019, 14, e0222854.	2.5	38
9	State-of-the-art of tools and methods to assess vine water status. Oeno One, 2019, 53, .	1.4	36
10	Developmental, molecular and genetic studies on grapevine response to temperature open breeding strategies for adaptation to warming. Oeno One, 2017, 51, 155-165.	1.4	32
11	The microvine, a model for studies in grapevine physiology and genetics. Oeno One, 2019, 53, .	1.4	24
12	Validation and Application of an Improved Method for the Rapid Determination of Proline in Grape Berries. Journal of Agricultural and Food Chemistry, 2014, 62, 3384-3389.	5.2	23
13	Review of water deficit mediated changes in vine and berry physiology; Consequences for the optimization of irrigation strategies. Oeno One, 2019, 53, .	1.4	23
14	Effect of drying on tartaric acid and malic acid in Shiraz and Merlot berries. Australian Journal of Grape and Wine Research, 2018, 24, 421-429.	2.1	22
15	Sucrose Metabolism and Transport in Grapevines, with Emphasis on Berries and Leaves, and Insights Gained from a Cross-Species Comparison. International Journal of Molecular Sciences, 2021, 22, 7794.	4.1	21
16	Developmental, molecular and genetic studies on grapevine response to temperature open breeding strategies for adaptation to warming. Oeno One, 2017, 51, 155.	1.4	19
17	Single berry reconstitution prior to RNA-sequencing reveals novel insights into transcriptomic remodeling by leafroll virus infections in grapevines. Scientific Reports, 2020, 10, 12905.	3.3	15
18	Modifications of Grapevine Berry Composition Induced by Main Viral and Fungal Pathogens in a Climate Change Scenario. Frontiers in Plant Science, 2021, 12, 717223.	3.6	15

Markus Rienth

#	Article	IF	CITATIONS
19	Versatile and efficient RNA extraction protocol for grapevine berry tissue, suited for next generation RNA sequencing. Australian Journal of Grape and Wine Research, 2014, 20, 247-254.	2.1	11
20	A vine physiology-based terroir study in the AOC-Lavaux region in Switzerland. Oeno One, 2020, 54, 699-716.	1.4	9
21	The Microvine: A Versatile Plant Model to Boost Grapevine Studies in Physiology and Genetics. , 2019, , .		5
22	Nuances of Responses to Two Sources of Grapevine Leafroll Disease on Pinot Noir Grown in the Field for 17 Years. Viruses, 2022, 14, 1333.	3.3	4
23	Transcriptional response to temperature of ripening microvine (DRCF) depends on daytime. Acta Horticulturae, 2017, , 321-328.	0.2	2