Reinhard Hohlfeld

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5411816/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10719-10724.	7.1	666
2	Matching of oligoclonal immunoglobulin transcriptomes and proteomes of cerebrospinal fluid in multiple sclerosis. Nature Medicine, 2008, 14, 688-693.	30.7	247
3	Autoimmune human T lymphocytes specific for acetylcholine receptor. Nature, 1984, 310, 244-246.	27.8	214
4	Autoantibodies to MOG in a distinct subgroup of adult multiple sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2016, 3, e257.	6.0	178
5	Long-term effects of fingolimod in multiple sclerosis. Neurology, 2015, 84, 1582-1591.	1.1	173
6	The search for the target antigens of multiple sclerosis, part 2: CD8+ T cells, B cells, and antibodies in the focus of reverse-translational research. Lancet Neurology, The, 2016, 15, 317-331.	10.2	160
7	Impaired NK-mediated regulation of T-cell activity in multiple sclerosis is reconstituted by IL-2 receptor modulation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2973-82.	7.1	157
8	The search for the target antigens of multiple sclerosis, part 1: autoreactive CD4+ T lymphocytes as pathogenic effectors and therapeutic targets. Lancet Neurology, The, 2016, 15, 198-209.	10.2	156
9	From classic to spontaneous and humanized models of multiple sclerosis: Impact on understanding pathogenesis and drug development. Journal of Autoimmunity, 2014, 54, 33-50.	6.5	148
10	Distinct oligoclonal band antibodies in multiple sclerosis recognize ubiquitous self-proteins. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7864-7869.	7.1	145
11	Features of Human CD3+CD20+ T Cells. Journal of Immunology, 2016, 197, 1111-1117.	0.8	144
12	Pathogenicity of human antibodies against myelin oligodendrocyte glycoprotein. Annals of Neurology, 2018, 84, 315-328.	5.3	140
13	Inflammatory CNS disease caused by immune checkpoint inhibitors: status and perspectives. Nature Reviews Neurology, 2017, 13, 755-763.	10.1	139
14	Dual role of inflammation in CNS disease. Neurology, 2007, 68, S58-S63.	1.1	100
15	The Immunoregulator Soluble TACI Is Released by ADAM10 and Reflects B Cell Activation in Autoimmunity. Journal of Immunology, 2015, 194, 542-552.	0.8	99
16	CTLA4 as Immunological Checkpoint in the Development of Multiple Sclerosis. Annals of Neurology, 2016, 80, 294-300.	5.3	94
17	Pro-inflammatory pattern of IgG1 Fc glycosylation in multiple sclerosis cerebrospinal fluid. Journal of Neuroinflammation, 2015, 12, 235.	7.2	86
18	Risks and risk management in modern multiple sclerosis immunotherapeutic treatment. Therapeutic Advances in Neurological Disorders, 2019, 12, 175628641983657.	3.5	83

Reinhard Hohlfeld

#	Article	IF	CITATIONS
19	Genetic control of multiple sclerosis: Increased production of lymphotoxin and tumor necrosis factor-? by HLA-DR2+ T cells. Annals of Neurology, 1995, 38, 723-730.	5.3	81
20	Early adaptive immune activation detected in monozygotic twins with prodromal multiple sclerosis. Journal of Clinical Investigation, 2019, 129, 4758-4768.	8.2	81
21	Fingolimod induces neuroprotective factors in human astrocytes. Journal of Neuroinflammation, 2015, 12, 184.	7.2	70
22	Intrathecal somatic hypermutation of IgM in multiple sclerosis and neuroinflammation. Brain, 2014, 137, 2703-2714.	7.6	69
23	The ups and downs of multiple sclerosis therapeutics. Annals of Neurology, 2001, 49, 281-284.	5.3	61
24	First manifestation of multiple sclerosis after immunization with the Pfizer-BioNTech COVID-19 vaccine. Journal of Neurology, 2022, 269, 55-58.	3.6	54
25	Human Plasmacytoid Dendritic Cells Display and Shed B Cell Maturation Antigen upon TLR Engagement. Journal of Immunology, 2017, 198, 3081-3088.	0.8	53
26	αβ T-cell receptors from multiple sclerosis brain lesions show MAIT cell–related features. Neurology: Neuroimmunology and NeuroInflammation, 2015, 2, e107.	6.0	52
27	DNA methylation signatures of monozygotic twins clinically discordant for multiple sclerosis. Nature Communications, 2019, 10, 2094.	12.8	51
28	Visualizing context-dependent calcium signaling in encephalitogenic T cells in vivo by two-photon microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6381-E6389.	7.1	46
29	Twin study reveals non-heritable immune perturbations in multiple sclerosis. Nature, 2022, 603, 152-158.	27.8	45
30	Guidelines on dermatomyositis – excerpt from the interdisciplinary S2k guidelines on myositis syndromes by the German Society of Neurology. JDDG - Journal of the German Society of Dermatology, 2016, 14, 321-338.	0.8	43
31	Neurotrophic cross-talk between the nervous and immune systems: Relevance for repair strategies in multiple sclerosis?. Journal of the Neurological Sciences, 2008, 265, 93-96.	0.6	42
32	Mitochondrial DNA Variation and Heteroplasmy in Monozygotic Twins Clinically Discordant for Multiple Sclerosis. Human Mutation, 2016, 37, 765-775.	2.5	41
33	Activation of a myelin basic protein-specific human T cell clone by antigen-presenting cells from rhesus monkeys. International Immunology, 1995, 7, 1489-1495.	4.0	39
34	Recurrence of disease activity during pregnancy after cessation of fingolimod in multiple sclerosis. Multiple Sclerosis Journal, 2018, 24, 991-994.	3.0	38
35	Sunlight exposure exerts immunomodulatory effects to reduce multiple sclerosis severity. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, . 	7.1	38
36	Immune signatures of prodromal multiple sclerosis in monozygotic twins. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21546-21556.	7.1	36

REINHARD HOHLFELD

#	Article	IF	CITATIONS
37	Multiple sclerosis: Human model for EAE?. European Journal of Immunology, 2009, 39, 2036-2039.	2.9	31
38	Multiple sclerosis–like lesions and type I interferon signature in a patient with RVCL. Neurology: Neuroimmunology and NeuroInflammation, 2015, 2, e55.	6.0	27
39	Features of MOG required for recognition by patients with MOG antibody-associated disorders. Brain, 2021, 144, 2375-2389.	7.6	27
40	Predictors for multiple sclerosis relapses after switching from natalizumab to fingolimod. Multiple Sclerosis Journal, 2014, 20, 1714-1720.	3.0	25
41	Basic Principles of Immunotherapy for Neurologic Diseases. Seminars in Neurology, 2003, 23, 121-132.	1.4	20
42	Abundant glutamic acid decarboxylase (GAD)â€reactive B cells in gadâ€antibody–associated neurological disorders. Annals of Neurology, 2019, 85, 448-454.	5.3	18
43	Transplantation of Myasthenia Gravis Thymus to SCID Mice. Annals of the New York Academy of Sciences, 1993, 681, 66-73.	3.8	16
44	Update on sporadic inclusion body myositis. Brain, 2011, 134, 3141-3145.	7.6	16
45	Ocrelizumab in multiple sclerosis: markers and mechanisms. Lancet Neurology, The, 2017, 16, 259-261.	10.2	16
46	Cross-reactivity of a pathogenic autoantibody to a tumor antigen in GABA _A receptor encephalitis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	16
47	Does inflammation stimulate remyelination?. Journal of Neurology, 2007, 254, 147-154.	3.6	15
48	Cytotoxic T cells go awry in inclusion body myositis. Brain, 2016, 139, 1312-1314.	7.6	14
49	An expanded parenchymal CD8+ T cell clone in GABA _A receptor encephalitis. Annals of Clinical and Translational Neurology, 2020, 7, 239-244.	3.7	14
50	Association of smoking but not HLA-DRB1*15:01, <i>APOE</i> or body mass index with brain atrophy in early multiple sclerosis. Multiple Sclerosis Journal, 2019, 25, 661-668.	3.0	12
51	Immunologic factors in primary progressive multiple sclerosis. Multiple Sclerosis Journal, 2004, 10, S16-S22.	3.0	11
52	Oligodendrocyte myelin glycoprotein as a novel target for pathogenic autoimmunity in the CNS. Acta Neuropathologica Communications, 2020, 8, 207.	5.2	11
53	Review: â€~Gimme five': future challenges in multiple sclerosis. ECTRIMS Lecture 2009. Multiple Sclerosis Journal, 2010, 16, 3-14.	3.0	10
54	T Cell–Transfer Experimental Autoimmune Encephalomyelitis: Pillar of Multiple Sclerosis and Autoimmunity. Journal of Immunology, 2017, 198, 3381-3383.	0.8	8

REINHARD HOHLFELD

#	Article	IF	CITATIONS
55	Antibody Therapies for Progressive Multiple Sclerosis and for Promoting Repair. Neurotherapeutics, 2022, 19, 774-784.	4.4	6
56	Antiglutamatergic therapy for multiple sclerosis?. Lancet Neurology, The, 2016, 15, 1003-1004.	10.2	5
57	Charting a global research strategy for progressive MS—An international progressive MS Alliance proposal. Multiple Sclerosis Journal, 2022, 28, 16-28.	3.0	5
58	<scp>CD20</scp> ⁺ T Cells as Pathogenic Players and Therapeutic Targets in <scp>MS</scp> . Annals of Neurology, 2021, 90, 722-724.	5.3	4
59	Myasthenia gravis: selective enrichment of antiacetylcholine receptor antibody production in untransformed human B cell cultures. European Journal of Immunology, 1999, 29, 3538-3548.	2.9	3
60	β-Amyloid: Enemy or Remedy?. Science Translational Medicine, 2012, 4, 145fs24.	12.4	3
61	A bird's-eye view of T cells during natalizumab therapy. Neurology, 2013, 81, 1372-1373.	1.1	3
62	Progress in understanding inflammatory and autoimmune diseases of the central nervous system. Seminars in Immunopathology, 2009, 31, 437-438.	6.1	2
63	Patient-to-patient transmission of natalizumab-associated PML?. Multiple Sclerosis Journal, 2017, 23, 1564-1565.	3.0	2
64	Immune dysbalance in childhood multiple sclerosis: a â€ [~] chicken or the egg' conundrum. Brain, 2019, 142, 490-492.	7.6	2
65	Immune checkpoint blockade for treating progressive multifocal leukoencephalopathy. Lancet Neurology, The, 2019, 18, 623-624.	10.2	1
66	Multiple sclerosis meets systems immunology. Lancet Neurology, The, 2021, 20, 887-888.	10.2	1
67	Toward identification of personalized immunological profiles in multiple sclerosis. Science Advances, 2022, 8, eabq4849.	10.3	1
68	The basis of immunotherapy in neurological disease. , 2002, , 1527-1546.		0

5