Saim Ã-zkar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5411813/publications.pdf Version: 2024-02-01

13,700	64	99
citations	h-index	g-index
311	311	8495
ocs citations	times ranked	citing authors
	eitations 311	eitations h-index 311 311

SAINA Ã-ZKAD

#	Article	IF	CITATIONS
1	How to increase the catalytic efficacy of platinumâ€based nanocatalysts for hydrogen generation from the hydrolysis of ammonia borane. International Journal of Energy Research, 2022, 46, 22089-22099.	2.2	5
2	Magnetically separable nickel ferrite supported palladium nanoparticles: Highly reusable catalyst in Sonogashira cross-coupling reaction. Journal of Colloid and Interface Science, 2022, 623, 574-583.	5.0	6
3	A review of the catalytic conversion of glycerol to lactic acid in the presence of aqueous base. RSC Advances, 2022, 12, 18864-18883.	1.7	12
4	Rhodium(0), Ruthenium(0) and Palladium(0) nanoparticles supported on carbon-coated iron: Magnetically isolable and reusable catalysts for hydrolytic dehydrogenation of ammonia borane. International Journal of Hydrogen Energy, 2021, 46, 13548-13560.	3.8	37
5	A review on platinum(0) nanocatalysts for hydrogen generation from the hydrolysis of ammonia borane. Dalton Transactions, 2021, 50, 12349-12364.	1.6	35
6	LaMer's 1950 model of particle formation: a review and critical analysis of its classical nucleation and fluctuation theory basis, of competing models and mechanisms for phase-changes and particle formation, and then of its application to silver halide, semiconductor, metal, and metal-oxide nanoparticles. Materials Advances, 2021, 2, 186-235.	2.6	58
7	Tungsten(VI) oxide supported rhodium nanoparticles: Highly active catalysts in hydrogen generation from ammonia borane. International Journal of Hydrogen Energy, 2021, 46, 14259-14269.	3.8	18
8	Magnetically separable transition metal nanoparticles as catalysts in hydrogen generation from the hydrolysis of ammonia borane. International Journal of Hydrogen Energy, 2021, 46, 21383-21400.	3.8	15
9	Magnetically Isolable Pt ⁰ /Co ₃ O ₄ Nanocatalysts: Outstanding Catalytic Activity and High Reusability in Hydrolytic Dehydrogenation of Ammonia Borane. ACS Applied Materials & Interfaces, 2021, 13, 34341-34348.	4.0	44
10	Cobalt ferrite supported platinum nanoparticles: Superb catalytic activity and outstanding reusability in hydrogen generation from the hydrolysis of ammonia borane. Journal of Colloid and Interface Science, 2021, 596, 100-107.	5.0	54
11	Recent advances in heterogeneous catalysts for the effective electroreduction of carbon dioxide to carbon monoxide. Journal of Power Sources, 2021, 506, 230215.	4.0	22
12	Transition metal nanoparticle catalysts in releasing hydrogen from the methanolysis of ammonia borane. International Journal of Hydrogen Energy, 2020, 45, 7881-7891.	3.8	40
13	Synthesis of zinc borate using water soluble additives: Kinetics and product characterization. Journal of Crystal Growth, 2020, 533, 125461.	0.7	4
14	Ceria Supported Nickel(0) Nanoparticles: A Highly Active and Low Cost Electrocatalyst for Hydrogen Evolution Reaction. Journal of the Electrochemical Society, 2020, 167, 106513.	1.3	8
15	Particle Size Distributions via Mechanism-Enabled Population Balance Modeling. Journal of Physical Chemistry C, 2020, 124, 4852-4880.	1.5	30
16	Dust Effects on Ir(0)n Nanoparticle Formation Nucleation and Growth Kinetics and Particle Size-Distributions: Analysis by and Insights from Mechanism-Enabled Population Balance Modeling. Langmuir, 2020, 36, 1496-1506.	1.6	12
17	Magnetically Separable Rh ⁰ /Co ₃ O ₄ Nanocatalyst Provides over a Million Turnovers in Hydrogen Release from Ammonia Borane. ACS Sustainable Chemistry and Engineering, 2020, 8, 4216-4224.	3.2	64
18	Highly active, robust and reusable micro-/mesoporous TiN/Si3N4 nanocomposite-based catalysts for clean energy: Understanding the key role of TiN nanoclusters and amorphous Si3N4 matrix in the performance of the catalyst system. Applied Catalysis B: Environmental, 2020, 272, 118975.	10.8	28

SAIM Ã-ZKAR

#	Article	IF	CITATIONS
19	Activated carbon derived from tea waste: A promising supporting material for metal nanoparticles used as catalysts in hydrolysis of ammonia borane. Biomass and Bioenergy, 2020, 138, 105589.	2.9	47
20	LaMer's 1950 Model for Particle Formation of Instantaneous Nucleation and Diffusion-Controlled Growth: A Historical Look at the Model's Origins, Assumptions, Equations, and Underlying Sulfur Sol Formation Kinetics Data. Chemistry of Materials, 2019, 31, 7116-7132.	3.2	111
21	Ceria supported ruthenium nanoparticles: Remarkable catalyst for H2 evolution from dimethylamine borane. International Journal of Hydrogen Energy, 2019, 44, 26296-26307.	3.8	22
22	Mechanism-Enabled Population Balance Modeling of Particle Formation en Route to Particle Average Size and Size Distribution Understanding and Control. Journal of the American Chemical Society, 2019, 141, 15827-15839.	6.6	48
23	Immobilized Polyoxomolybdate Nanoclusters on Functionalized SBAâ€15: Green Access to Efficient and Recyclable Nanocatalyst for the Epoxidation of Alkenes. ChemistrySelect, 2019, 4, 5911-5917.	0.7	8
24	Nanoparticle Formation Kinetics and Mechanistic Studies Important to Mechanism-Based Particle-Size Control: Evidence for Ligand-Based Slowing of the Autocatalytic Surface Growth Step Plus Postulated Mechanisms. Journal of Physical Chemistry C, 2019, 123, 14047-14057.	1.5	13
25	Magnetically separable rhodium nanoparticles as catalysts for releasing hydrogen from the hydrolysis of ammonia borane. Journal of Colloid and Interface Science, 2019, 553, 581-587.	5.0	50
26	Nanoalumina supported palladium(0) nanoparticle catalyst for releasing H2 from dimethylamine borane. Applied Surface Science, 2019, 487, 433-441.	3.1	15
27	Noble metal nanoparticles supported on activated carbon: Highly recyclable catalysts in hydrogen generation from the hydrolysis of ammonia borane. Journal of Colloid and Interface Science, 2019, 546, 324-332.	5.0	84
28	Group 4 oxides supported Rhodium(0) catalysts in hydrolytic dehydrogenation of ammonia borane. International Journal of Hydrogen Energy, 2019, 44, 14164-14174.	3.8	35
29	Decomposition of formic acid using tungsten(VI) oxide supported AgPd nanoparticles. Journal of Colloid and Interface Science, 2019, 538, 682-688.	5.0	19
30	Ceria supported ruthenium(0) nanoparticles: Highly efficient catalysts in oxygen evolution reaction. Journal of Colloid and Interface Science, 2019, 534, 704-710.	5.0	37
31	Nanoceria-Supported Ruthenium(0) Nanoparticles: Highly Active and Stable Catalysts for Hydrogen Evolution from Water. ACS Applied Materials & Interfaces, 2018, 10, 6299-6308.	4.0	80
32	Ammonia borane as hydrogen storage materials. International Journal of Hydrogen Energy, 2018, 43, 18592-18606.	3.8	174
33	Nanozirconia supported ruthenium(0) nanoparticles: Highly active and reusable catalyst in hydrolytic dehydrogenation of ammonia borane. Journal of Colloid and Interface Science, 2018, 513, 287-294.	5.0	56
34	Supported Nanoparticles for Liquid-Phase Catalysis. , 2018, , 607-624.		1
35	"Weakly Ligated, Labile Ligand―Nanoparticles: The Case of Ir(0) <i>_n</i> ·(H ⁺ Cl [–]) <i>_m</i> . ACS Omega, 2018, 3, 14538-14550.	1.6	9
36	Metal Nanoparticles in Liquid Phase Catalysis. , 2018, , 497-519.		0

Metal Nanoparticles in Liquid Phase Catalysis. , 2018, , 497-519. 36

3

#	Article	IF	CITATIONS
37	Synthesis, characterization, photophysical and electrochemical properties of a new nonâ~'planar perylene diimide with electron donating substituent. Optical Materials, 2018, 82, 30-38.	1.7	4
38	Preparation and characterization of a new CdS–NiFe2O4/reduced graphene oxide photocatalyst and its use for degradation of methylene blue under visible light irradiation. Research on Chemical Intermediates, 2018, 44, 5953-5979.	1.3	29
39	Nanoceria supported rhodium(0) nanoparticles as catalyst for hydrogen generation from methanolysis of ammonia borane. Applied Catalysis B: Environmental, 2018, 237, 1012-1020.	10.8	79
40	Ruthenium(0) nanoparticles supported on silica coated Fe3O4 as magnetically separable catalysts for hydrolytic dehydrogenation of ammonia borane. International Journal of Hydrogen Energy, 2018, 43, 15124-15134.	3.8	49
41	Oxidation of oâ€phenylenediamine to 2,3â€diaminophenazine in the presence of cubic ferrites MFe ₂ O ₄ (M = Mn, Co, Ni, Zn) and the application in colorimetric detection of H ₂ O ₂ . Applied Organometallic Chemistry, 2018, 32, e4465.	1.7	56
42	Rhodium(0) nanoparticles supported on ceria as catalysts in hydrogenation of neat benzene at room temperature. Journal of Colloid and Interface Science, 2018, 530, 459-464.	5.0	23
43	Ceria supported manganese(0) nanoparticle catalysts for hydrogen generation from the hydrolysis of sodium borohydride. International Journal of Hydrogen Energy, 2018, 43, 15262-15274.	3.8	34
44	Titania, zirconia and hafnia supported ruthenium(0) nanoparticles: Highly active hydrogen evolution catalysts. Journal of Colloid and Interface Science, 2018, 531, 570-577.	5.0	15
45	Nanoceria supported palladium(0) nanoparticles: Superb catalyst in dehydrogenation of formic acid at room temperature. Applied Catalysis B: Environmental, 2017, 206, 384-392.	10.8	112
46	Palladium(0) nanoparticles supported on polydopamine coated CoFe 2 O 4 as highly active, magnetically isolable and reusable catalyst for hydrogen generation from the hydrolysis of ammonia borane. Applied Catalysis B: Environmental, 2017, 208, 104-115.	10.8	141
47	Enhanced reactivity in a heterogeneous oxido-peroxido molybdenum(VI) complex of salicylidene 2-picoloyl hydrazone in catalytic epoxidation of olefins. Transition Metal Chemistry, 2017, 42, 357-363.	0.7	4
48	Ceria supported copper(0) nanoparticles as efficient and cost-effective catalyst for the dehydrogenation of dimethylamine borane. Molecular Catalysis, 2017, 434, 57-68.	1.0	14
49	Oxazine containing molybdenum(VI)–oxodiperoxo complex immobilized on SBA-15 as highly active and selective catalyst in the oxidation of alkenes to epoxides under solvent-free conditions. Microporous and Mesoporous Materials, 2017, 251, 173-180.	2.2	12
50	Nanoceria supported cobalt(0) nanoparticles: a magnetically separable and reusable catalyst in hydrogen generation from the hydrolysis of ammonia borane. New Journal of Chemistry, 2017, 41, 6546-6552.	1.4	44
51	Nanoparticle Nucleation Is Termolecular in Metal and Involves Hydrogen: Evidence for a Kinetically Effective Nucleus of Three {Ir3H2x·P2W15Nb3O62}6– in Ir(0)n Nanoparticle Formation From [(1,5-COD)Irl·P2W15Nb3O62]8– Plus Dihydrogen. Journal of the American Chemical Society, 2017, 139, 5444-5457.	6.6	46
52	Oleylamineâ€6tabilized Copper(0) Nanoparticles: An Efficient and Lowâ€Cost Catalyst for the Dehydrogenation of Dimethylamine Borane. ChemCatChem, 2017, 9, 2588-2598.	1.8	14
53	Ruthenium(0) nanoparticles supported on nanohafnia: A highly active and long-lived catalyst in hydrolytic dehydrogenation of ammonia borane. Molecular Catalysis, 2017, 430, 29-35.	1.0	36
54	Nickel(0) nanoparticles supported on bare or coated cobalt ferrite as highly active, magnetically isolable and reusable catalyst for hydrolytic dehydrogenation of ammonia borane. Journal of Colloid and Interface Science, 2017, 508, 359-368.	5.0	54

#	Article	IF	CITATIONS
55	A Classic Azo–Dye Agglomeration System: Evidence for Slow, Continuous Nucleation, Autocatalytic Agglomerative Growth, Plus the Effects of Dust Removal by Microfiltration on the Kinetics. Journal of Physical Chemistry A, 2017, 121, 7071-7078.	1.1	7
56	Nanotitania‣upported Rhodium(0) Nanoparticles: Superb Catalyst in Dehydrogenation of Dimethylamine Borane. ChemistrySelect, 2017, 2, 5751-5759.	0.7	4
57	Silver Nanoparticles Synthesized by Microwave Heating: A Kinetic and Mechanistic Re-Analysis and Re-Interpretation. Journal of Physical Chemistry C, 2017, 121, 27643-27654.	1.5	29
58	Dust Effects on Nucleation Kinetics and Nanoparticle Product Size Distributions: Illustrative Case Study of a Prototype Ir(0) _{<i>n</i>} Transition-Metal Nanoparticle Formation System. Langmuir, 2017, 33, 6550-6562.	1.6	24
59	Nanoalumina-supported rhodium(0) nanoparticles as catalyst in hydrogen generation from the methanolysis of ammonia borane. Molecular Catalysis, 2017, 439, 50-59.	1.0	40
60	Palladium(0) Nanoparticle Formation, Stabilization, and Mechanistic Studies: Pd(acac) ₂ as a Preferred Precursor, [Bu ₄ N] ₂ HPO ₄ Stabilizer, plus the Stoichiometry, Kinetics, and Minimal, Four-Step Mechanism of the Palladium Nanoparticle Formation and Subsequent Agglomeration Reactions. Langmuir, 2016, 32, 3699-3716.	1.6	32
61	Palladium(0) nanoparticles supported on ceria: Highly active and reusable catalyst in hydrogen generation from the hydrolysis of ammonia borane. International Journal of Hydrogen Energy, 2016, 41, 11154-11162.	3.8	108
62	Inverse relation between the catalytic activity and catalyst concentration for the ruthenium(0) nanoparticles supported on xonotlite nanowire in hydrogen generation from the hydrolysis of sodium borohydride. Journal of Molecular Catalysis A, 2016, 424, 254-260.	4.8	25
63	Facile Synthesis of Threeâ€Dimensional Ptâ€īiO ₂ Nanoâ€networks: A Highly Active Catalyst for the Hydrolytic Dehydrogenation of Ammonia–Borane. Angewandte Chemie - International Edition, 2016, 55, 12257-12261.	7.2	141
64	Facile Synthesis of Threeâ€Ðimensional Ptâ€īiO ₂ Nanoâ€networks: A Highly Active Catalyst for the Hydrolytic Dehydrogenation of Ammonia–Borane. Angewandte Chemie, 2016, 128, 12445-12449.	1.6	35
65	Palladium(0) nanoparticles supported on polydopamine coated Fe ₃ O ₄ as magnetically isolable, highly active and reusable catalysts for hydrolytic dehydrogenation of ammonia borane. RSC Advances, 2016, 6, 102035-102042.	1.7	61
66	Ceria supported rhodium nanoparticles: Superb catalytic activity in hydrogen generation from the hydrolysis of ammonia borane. Applied Catalysis B: Environmental, 2016, 198, 162-170.	10.8	219
67	Ceria-supported ruthenium nanoparticles as highly active and long-lived catalysts in hydrogen generation from the hydrolysis of ammonia borane. Dalton Transactions, 2016, 45, 10969-10978.	1.6	83
68	Synthesis, characterization, and catalytic activity of supported molybdenum Schiff base complex as a magneticallyÂrecoverable nanocatalyst in epoxidation reaction. Journal of Coordination Chemistry, 2016, 69, 668-677.	0.8	17
69	Immobilization of a molybdenum complex on the surface of magnetic nanoparticles for the catalytic epoxidation of olefins. New Journal of Chemistry, 2016, 40, 1580-1586.	1.4	29
70	Highly active and long lived homogeneous catalyst for the dehydrogenation of dimethylamine borane starting with ruthenium(III) acetylacetonate and oleylamine precatalyst. Journal of Molecular Catalysis A, 2016, 411, 9-18.	4.8	14
71	Rhodium(0) nanoparticles supported on nanosilica: Highly active and long lived catalyst in hydrogen generation from the methanolysis of ammonia borane. Applied Catalysis B: Environmental, 2016, 181, 716-726.	10.8	71
72	Flame retardancy and mechanical properties of petâ€based composites containing phosphorus and boronâ€based additives. Journal of Applied Polymer Science, 2015, 132, .	1.3	29

#	Article	IF	CITATIONS
73	A New Homogeneous Catalyst for the Dehydrogenation of Dimethylamine Borane Starting with Ruthenium(III) Acetylacetonate. Materials, 2015, 8, 3155-3167.	1.3	16
74	Dihydrogen Phosphate Stabilized Ruthenium(0) Nanoparticles: Efficient Nanocatalyst for The Hydrolysis of Ammonia-Borane at Room Temperature. Materials, 2015, 8, 4226-4238.	1.3	12
75	A ruthenium(II) bipyridine complex containing a 4,5-diazafluorene moiety: Synthesis, characterization and its applications in transfer hydrogenation of ketones and dye sensitized solar cells. Polyhedron, 2015, 89, 55-61.	1.0	11
76	Poly(4-styrenesulfonic acid-co-maleic acid) stabilized cobalt(0) nanoparticles: A cost-effective and magnetically recoverable catalyst in hydrogen generation from the hydrolysis of hydrazine borane. International Journal of Hydrogen Energy, 2015, 40, 2255-2265.	3.8	33
77	Rhodium(0) nanoparticles supported on hydroxyapatite nanospheres and further stabilized by dihydrogen phosphate ion: A highly active catalyst in hydrogen generation from the methanolysis of ammonia borane. International Journal of Hydrogen Energy, 2015, 40, 10491-10501.	3.8	53
78	The story of a mechanism-based solution to an irreproducible synthesis resulting in an unexpected closed-system requirement for the LiBEt3H-based reduction: The case of the novel subnanometer cluster, [Ir(1,5-COD)(Î ¹ /4-H)]4, and the resulting improved, independently repeatable, reliable synthesis. Inorganica Chimica Acta, 2015, 432, 250-257.	1.2	6
79	Agglomerative Sintering of an Atomically Dispersed Ir ₁ /Zeolite Y Catalyst: Compelling Evidence Against Ostwald Ripening but for Bimolecular and Autocatalytic Agglomeration Catalyst Sintering Steps. ACS Catalysis, 2015, 5, 3514-3527.	5.5	66
80	Unintuitive Inverse Dependence of the Apparent Turnover Frequency on Precatalyst Concentration: A Quantitative Explanation in the Case of Ziegler-Type Nanoparticle Catalysts Made from [(1,5-COD)lr(1¼-O ₂ C ₈ H ₁₅)] ₂ and AlEt ₃ . ACS Catalysis, 2015, 5, 3342-3353.	5.5	27
81	PVP-stabilized nickel(0) nanoparticles as catalyst in hydrogen generation from the methanolysis of hydrazine borane or ammonia borane. Applied Catalysis B: Environmental, 2015, 162, 573-582.	10.8	118
82	Electrochemical Behavior of Hydrazine Borane in Methanol Solution. Journal of the Electrochemical Society, 2014, 161, F1171-F1175.	1.3	1
83	Immobilization of dioxomolybdenum(VI) complex bearing salicylidene 2-picoloyl hydrazone on chloropropyl functionalized SBA-15: A highly active, selective and reusable catalyst in olefin epoxidation. Applied Catalysis A: General, 2014, 475, 55-62.	2.2	45
84	Triniobium, Wells–Dawson-Type Polyoxoanion, [(<i>n</i> -C ₄ H ₉) ₄ N] ₉ P ₂ W ₁₅ Nb< Improvements in the Synthesis, Its Reliability, the Purity of the Product, and the Detailed Synthetic Procedure. Inorganic Chemistry, 2014, 53, 2666-2676.	sub33 <td>ıb>O_{62 17}</td>	ıb>O _{62 17}
85	Ruthenium(0) nanoparticles supported on nanotitania as highly active and reusable catalyst in hydrogen generation from the hydrolysis of ammonia borane. International Journal of Hydrogen Energy, 2014, 39, 9628-9637.	3.8	105
86	Ruthenium(III) ion-exchanged zeolite Y as highly active and reusable catalyst in decomposition of nitrous oxide to sole nitrogen and oxygen. Microporous and Mesoporous Materials, 2014, 196, 51-58.	2.2	9
87	Palladium(0) nanoparticles supported on metal organic framework as highly active and reusable nanocatalyst in dehydrogenation of dimethylamine-borane. Applied Catalysis B: Environmental, 2014, 147, 394-401.	10.8	60
88	Palladium(0) nanoparticles supported on silica-coated cobalt ferrite: A highly active, magnetically isolable and reusable catalyst for hydrolytic dehydrogenation of ammonia borane. Applied Catalysis B: Environmental, 2014, 147, 387-393.	10.8	139
89	Ruthenium(0) nanoparticles supported on xonotlite nanowire: a long-lived catalyst for hydrolytic dehydrogenation of ammonia-borane. Dalton Transactions, 2014, 43, 1797-1805.	1.6	63
90	Ruthenium(0) nanoparticles stabilized by metal-organic framework (ZIF-8): Highly efficient catalyst for the dehydrogenation of dimethylamine-borane and transfer hydrogenation of unsaturated hydrocarbons using dimethylamine-borane as hydrogen source. Applied Catalysis B: Environmental, 2014, 160-161, 534-541.	10.8	107

#	Article	IF	CITATIONS
91	Rhodium(0) nanoparticles supported on nanotitania as highly active catalyst in hydrogen generation from the hydrolysis of ammonia borane. RSC Advances, 2014, 4, 13742-13748.	1.7	48
92	Hydroxyapatite-nanosphere supported ruthenium(0) nanoparticle catalyst for hydrogen generation from ammonia-borane solution: kinetic studies for nanoparticle formation and hydrogen evolution. RSC Advances, 2014, 4, 28947-28955.	1.7	35
93	Ruthenium(0) nanoparticles supported on magnetic silica coated cobalt ferrite: Reusable catalyst in hydrogen generation from the hydrolysis of ammonia-borane. Journal of Molecular Catalysis A, 2014, 394, 253-261.	4.8	46
94	Epoxidation of olefins catalyzed by a molybdenum-Schiff base complex anchored in the pores of SBA-15. Journal of Molecular Catalysis A, 2014, 395, 470-480.	4.8	35
95	Iridium(0) nanoparticles dispersed in zeolite framework: A highly active and long-lived green nanocatalyst for the hydrogenation of neat aromatics at room temperature. Applied Catalysis B: Environmental, 2014, 148-149, 466-472.	10.8	45
96	Transition Metal Nanoparticles as Catalyst in Hydrogen Generation from the Boron-Based Hydrogen Storage Materials. , 2013, , 165-189.		6
97	Transition Metal Nanoparticles in Catalysis for the Hydrogen Generation from the Hydrolysis of Ammonia-Borane. Topics in Catalysis, 2013, 56, 1171-1183.	1.3	72
98	Exceptionally thermally stable, hydrocarbon soluble Ziegler-type Ir(0)n nanoparticle catalysts made from [Ir(1,5-COD)(μ-O2C8H15)]2 plus AlEt3: Tests of key hypotheses for their unusual stabilization. Journal of Molecular Catalysis A, 2013, 378, 333-343.	4.8	12
99	Surfactant modified zinc borate synthesis and its effect on the properties of PET. Powder Technology, 2013, 244, 38-44.	2.1	16
100	Poly(4-styrenesulfonic acid-co-maleic acid) stabilized nickel(0) nanoparticles: Highly active and cost effective catalyst in hydrogen generation from the hydrolysis of hydrazine borane. International Journal of Hydrogen Energy, 2013, 38, 14693-14703.	3.8	33
101	Oleylamine-stabilized ruthenium(0) nanoparticles catalyst in dehydrogenation of dimethylamine-borane. International Journal of Hydrogen Energy, 2013, 38, 10000-10011.	3.8	25
102	One-pot synthesis of 1,2/3-triols from the allylic hydroperoxides catalyzed by zeolite-confined osmium(0) nanoclusters. Journal of Molecular Catalysis A, 2013, 378, 142-147.	4.8	7
103	Kinetics of hydrogen generation from hydrolysis of sodium borohydride on Pt/C catalyst in a flow reactor. International Journal of Energy Research, 2013, 37, 443-448.	2.2	43
104	Hydroxyapatite supported ruthenium(0) nanoparticles catalyst in hydrolytic dehydrogenation of ammonia borane: Insight to the nanoparticles formation and hydrogen evolution kinetics. Applied Catalysis B: Environmental, 2013, 142-143, 187-195.	10.8	91
105	Hydrogen generation from the dehydrogenation of ammonia–borane in the presence of ruthenium(III) acetylacetonate forming a homogeneous catalyst. International Journal of Hydrogen Energy, 2013, 38, 180-187.	3.8	22
106	B–N Polymer Embedded Iron(0) Nanoparticles as Highly Active and Long Lived Catalyst in the Dehydrogenation of Ammonia Borane. Journal of Nanoscience and Nanotechnology, 2013, 13, 4954-4961.	0.9	7
107	Copper(0) Nanoparticles Supported on Silica-Coated Cobalt Ferrite Magnetic Particles: Cost Effective Catalyst in the Hydrolysis of Ammonia-Borane with an Exceptional Reusability Performance. ACS Applied Materials & Interfaces, 2012, 4, 3866-3873.	4.0	96
108	Size-controllable APTS stabilized ruthenium(0)nanoparticlescatalyst for the dehydrogenation of dimethylamine–borane at room temperature. Dalton Transactions, 2012, 41, 590-598.	1.6	51

#	Article	IF	CITATIONS
109	Dihydroxylation of olefins catalyzed by zeolite-confined osmium(0) nanoclusters: an efficient and reusable method for the preparation of 1,2-cis-diols. Green Chemistry, 2012, 14, 1488.	4.6	27
110	Hydrogen liberation from the hydrolytic dehydrogenation of dimethylamine–borane at room temperature by using a novel ruthenium nanocatalyst. Dalton Transactions, 2012, 41, 4976.	1.6	53
111	A facile one-step synthesis of polymer supported rhodium nanoparticles in organic medium and their catalytic performance in the dehydrogenation of ammonia-borane. Chemical Communications, 2012, 48, 1180-1182.	2.2	47
112	Synthesis and Characterization of [Ir(1,5-Cyclooctadiene)(μ-H)] ₄ : A Tetrametallic Ir ₄ H ₄ -Core, Coordinatively Unsaturated Cluster. Inorganic Chemistry, 2012, 51, 3186-3193.	1.9	17
113	CHAPTER 3. Preparation of Metal Nanoparticles Stabilized by the Framework of Porous Materials. RSC Green Chemistry, 2012, , 34-66.	0.0	2
114	Hydrocarbon-Soluble, Isolable Ziegler-Type Ir(0) _{<i>n</i>} Nanoparticle Catalysts Made from [(1,5-COD)Ir(μ-O ₂ C ₈ H ₁₅)] ₂ and 2–5 Equivalents of AlEt ₃ : Their High Catalytic Activity, Long Lifetime, and AlEt ₃ -Dependent, Exceptional, 200 °C Thermal Stability. ACS Catalysis, 2012, 2, 632-641.	5.5	14
115	Ruthenium(0) Nanoparticles Supported on Multiwalled Carbon Nanotube As Highly Active Catalyst for Hydrogen Generation from Ammonia–Borane. ACS Applied Materials & Interfaces, 2012, 4, 6302-6310.	4.0	183
116	Catalytic methanolysis of hydrazine borane: a new and efficient hydrogen generation system under mild conditions. Dalton Transactions, 2012, 41, 4912.	1.6	28
117	Hydroxyapatite-supported cobalt(0) nanoclusters as efficient and cost-effective catalyst for hydrogen generation from the hydrolysis of both sodium borohydride and ammonia-borane. Catalysis Today, 2012, 183, 17-25.	2.2	144
118	Water soluble polymer stabilized iron(0) nanoclusters: A cost-effective and magnetically recoverable catalyst in hydrogen generation from the hydrolysis of sodium borohydride and ammonia borane. Catalysis Today, 2012, 183, 10-16.	2.2	70
119	Hydrogen generation from the hydrolysis of hydrazine-borane catalyzed by rhodium(0) nanoparticles supported on hydroxyapatite. International Journal of Hydrogen Energy, 2012, 37, 5143-5151.	3.8	63
120	Palladium nanoparticles supported on chemically derived graphene: An efficient and reusable catalyst for the dehydrogenation of ammonia borane. International Journal of Hydrogen Energy, 2012, 37, 8161-8169.	3.8	132
121	Hydrogen generation from hydrolysis of ammonia-borane using Pd–PVB–TiO2 and Co–Ni–P/Pd–TiO2 under stirred conditions. Journal of Power Sources, 2012, 210, 184-190.	4.0	27
122	Effect of silver encapsulation on the local structure of titanosilicate ETS-10. Microporous and Mesoporous Materials, 2012, 159, 1-8.	2.2	15
123	Novel homogeneous catalyst comprising ruthenium and trimethylphosphite for the hydrolysis of sodium borohydride. Journal of Molecular Catalysis A, 2012, 355, 186-191.	4.8	11
124	Oleylamine-Stabilized Palladium(0) Nanoclusters As Highly Active Heterogeneous Catalyst for the Dehydrogenation of Ammonia Borane. Journal of Physical Chemistry C, 2011, 115, 10736-10743.	1.5	69
125	Industrial Ziegler-Type Hydrogenation Catalysts Made from Co(neodecanoate) ₂ or Ni(2-ethylhexanoate) ₂ and AlEt ₃ : Evidence for Nanoclusters and Sub-Nanocluster or Larger Ziegler-Nanocluster Based Catalysis. Langmuir, 2011, 27, 6279-6294.	1.6	25
126	One-pot synthesis of colloidally robust rhodium(0) nanoparticles and their catalytic activity in the dehydrogenation of ammonia-borane for chemical hydrogen storage. Dalton Transactions, 2011, 40, 3584.	1.6	27

#	Article	IF	CITATIONS
127	Cobalt–nickel–phosphorus supported on Pd-activated TiO2 (Co–Ni–P/Pd-TiO2) as cost-effective and reusable catalyst for hydrogen generation from hydrolysis of alkaline sodium borohydride solution. Journal of Alloys and Compounds, 2011, 509, 7016-7021.	2.8	90
128	Metal nanoparticles in liquid phase catalysis; from recent advances to future goals. Nanoscale, 2011, 3, 3462.	2.8	263
129	Is It Homogeneous or Heterogeneous Catalysis Derived from [RhCp*Cl ₂] ₂ ? <i>In Operando</i> XAFS, Kinetic, and Crucial Kinetic Poisoning Evidence for Subnanometer Rh ₄ Cluster-Based Benzene Hydrogenation Catalysis. Journal of the American Chemical Society. 2011. 133. 18889-18902.	6.6	147
130	Aminophosphine–palladium(II) complexes: Synthsesis, structure and applications in Suzuki and Heck cross-coupling reactions. Inorganica Chimica Acta, 2011, 378, 10-18.	1.2	30
131	Silica embedded cobalt(0) nanoclusters: Efficient, stable and cost effective catalyst for hydrogen generation from the hydrolysis of ammonia borane. International Journal of Hydrogen Energy, 2011, 36, 11528-11535.	3.8	49
132	Effect of stabilizer type on the activity and stability of water-dispersible cobalt(0) nanocluster catalysts in hydrogen generation from the hydrolysis of sodium borohydride. Reaction Kinetics, Mechanisms and Catalysis, 2011, 103, 325-340.	0.8	14
133	trans- and cis-Ru(II) aminophosphine complexes: Syntheses, X-ray structures and catalytic activity in transfer hydrogenation of acetophenone derivatives. Inorganica Chimica Acta, 2011, 367, 166-172.	1.2	30
134	Synthesis and structural characterization of a novel seven-coordinate cobalt(II) complex: 2,9-Bis(ethanolamine)-1,10-phenanthrolinechlorocobalt(II) chloride. Inorganica Chimica Acta, 2011, 371, 107-110.	1.2	7
135	Hydrogen generation from the methanolysis of ammonia borane catalyzed by in situ generated, polymer stabilized ruthenium(0) nanoclusters. Catalysis Today, 2011, 170, 93-98.	2.2	52
136	Zeolite framework stabilized nickel(0) nanoparticles: Active and long-lived catalyst for hydrogen generation from the hydrolysis of ammonia-borane and sodium borohydride. Catalysis Today, 2011, 170, 76-84.	2.2	98
137	Hydrogen generation from the hydrolysis of ammonia borane using cobalt-nickel-phosphorus (Co–Ni–P) catalyst supported on Pd-activated TiO2 by electroless deposition. International Journal of Hydrogen Energy, 2011, 36, 254-261.	3.8	66
	Water soluble nickel(0) and cobalt(0) nanoclusters stabilized by poly(4-styrenesulfonic) Tj ETQq0 0 0 rgBT /Over		•
138	the hydrolysis of ammonia borane. International Journal of Hydrogen Energy, 2011, 36, 1424-1432.	3.8	116
139	Polymer-immobilized palladium supported on TiO2 (Pd–PVB–TiO2) as highly active and reusable catalyst for hydrogen generation from the hydrolysis of unstirred ammonia–borane solution. International Journal of Hydrogen Energy, 2011, 36, 1448-1455.	3.8	61
140	Catalytic hydrolysis of hydrazine borane for chemical hydrogen storage: Highly efficient and fast hydrogen generation system at room temperature. International Journal of Hydrogen Energy, 2011, 36, 4958-4966.	3.8	105
141	Hydroxyapatite-supported palladium(0) nanoclusters as effective and reusable catalyst for hydrogen generation from the hydrolysis of ammonia-borane. International Journal of Hydrogen Energy, 2011, 36, 7019-7027.	3.8	80
142	Palladium(0) nanoclusters stabilized by poly(4-styrenesulfonic acid-co-maleic acid) as an effective catalyst for Suzuki–Miyaura cross-coupling reactions in water. Journal of Molecular Catalysis A, 2011, 337, 39-44.	4.8	39
143	Organometallic ruthenium, rhodium and iridium complexes containing a P-bound thiophene-2-(N-diphenylphosphino)methylamine ligand: Synthesis, molecular structure and catalytic activity. Journal of Organometallic Chemistry, 2011, 696, 2584-2588.	0.8	11
144	Ruthenium complexes of aminophosphine ligands and their use as pre-catalysts in the transfer hydrogenation of aromatic ketones: X-ray crystal structure of thiophene-2-(N-diphenylthiophosphino)methylamine. Polyhedron, 2011, 30, 796-804.	1.0	18

#		IF	CITATIONS
	Synthesis and characterization of new (<i>N</i> a€diphenylphosphino)a€isopropylanilines and their complexes: crystal structure of (Ph ₂ P ) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 747	7 Td (S)NH	ات£¿C
145	palladium(II) complexes in the Heck and Suzuki crossâ€coupling reactions. Applied Organometallic	1.7	5
146	Chemistry, 2010, 24, 17-24. Monodisperse nickel nanoparticles supported on SiO2 as an effective catalyst for the hydrolysis of ammonia-borane. Nano Research, 2010, 3, 676-684.	5.8	132
147	The preparation and characterization of gold(0) nanoclusters stabilized by zeolite framework: Highly active, selective and reusable catalyst in aerobic oxidation of benzyl alcohol. Materials Chemistry and Physics, 2010, 121, 359-363.	2.0	30
148	Scale-up synthesis of zinc borate from the reaction of zinc oxide and boric acid in aqueous medium. Journal of Crystal Growth, 2010, 312, 3361-3366.	0.7	19
149	Novel neutral phosphinite bridged dinuclear ruthenium(II) arene complexes and their catalytic use in transfer hydrogenation of aromatic ketones: X-ray structure of a new Schiff base, N3,N3′-di-2-hydroxybenzylidene-[2,2′]bipyridinyl-3,3′-diamine. Journal of Molecular Catalysis A, 2010, 326 75-81.	,4.8	44
150	Crystal structure of trans- and cis-bis(acetylacetonato)bis(trimethylphosphite)ruthenium(II) complexes and testing their catalytic activity in hydrogen generation from the hydrolysis of sodium borohydride. Inorganica Chimica Acta, 2010, 363, 1713-1718.	1.2	8
151	Zeolite confined copper(0) nanoclusters as cost-effective and reusable catalyst in hydrogen generation from the hydrolysis of ammonia-borane. International Journal of Hydrogen Energy, 2010, 35, 187-197.	3.8	122
152	Zeolite confined palladium(0) nanoclusters as effective and reusable catalyst for hydrogen generation from the hydrolysis of ammonia-borane. International Journal of Hydrogen Energy, 2010, 35, 1305-1312.	3.8	131
153	Hydrogen generation from the hydrolysis of ammonia-borane using intrazeolite cobalt(0) nanoclusters catalyst. International Journal of Hydrogen Energy, 2010, 35, 3341-3346.	3.8	122
154	Room temperature aerobic Suzuki cross-coupling reactions in DMF/water mixture using zeolite confined palladium(0) nanoclusters as efficient and recyclable catalyst. Applied Catalysis A: General, 2010, 382, 339-344.	2.2	83
155	Zeolite confined rhodium(0) nanoclusters as highly active, reusable, and long-lived catalyst in the methanolysis of ammonia-borane. Applied Catalysis B: Environmental, 2010, 93, 387-394.	10.8	92
156	Ruthenium(0) nanoclusters stabilized by zeolite framework as superb catalyst for the hydrogenation of neat benzene under mild conditions: Additional studies including cation site occupancy, catalytic activity, lifetime, reusability and poisoning. Applied Catalysis B: Environmental, 2010, 96, 533-540.	10.8	24
157	Hydrogenation of Aromatics Catalyzed by Ruthenium(0) Nanoclusters. Synfacts, 2010, 2010, 1086-1086.	0.0	ο
158	Monodisperse Nickel Nanoparticles and Their Catalysis in Hydrolytic Dehydrogenation of Ammonia Borane. Journal of the American Chemical Society, 2010, 132, 1468-1469.	6.6	477
159	Osmium(0) nanoclusters stabilized by zeolite framework; highly active catalyst in the aerobic oxidation of alcohols under mild conditions. Dalton Transactions, 2010, 39, 7521.	1.6	36
160	In Situ Formed "Weakly Ligated/Labile Ligand―Iridium(0) Nanoparticles and Aggregates as Catalysts for the Complete Hydrogenation of Neat Benzene at Room Temperature and Mild Pressures. Langmuir, 2010, 26, 12455-12464.	1.6	61
161	Ruthenium(0) Nanoclusters Stabilized by a Nanozeolite Framework: Isolable, Reusable, and Green Catalyst for the Hydrogenation of Neat Aromatics under Mild Conditions with the Unprecedented Catalytic Activity and Lifetime. Journal of the American Chemical Society, 2010, 132, 6541-6549.	6.6	139
162	Aminopropyltriethoxysilane stabilized ruthenium(0) nanoclusters as an isolable and reusable heterogeneous catalyst for the dehydrogenation of dimethylamine–borane. Chemical Communications, 2010, 46, 2938.	2.2	82

#	Article	IF	CITATIONS
163	lridium Ziegler-Type Hydrogenation Catalysts Made from [(1,5-COD)lr(μ-O ₂ C ₈ H ₁₅] ₂ and AlEt ₃ : Spectroscopic and Kinetic Evidence for the Ir _{<i>n</i>} Species Present and for Nanoparticles as the Fastest Catalyst. Inorganic Chemistry, 2010, 49, 8131-8147.	1.9	26
164	Ruthenium(0) nanoclusters supported on hydroxyapatite: highly active, reusable and green catalyst in the hydrogenation of aromatics under mild conditions with an unprecedented catalytic lifetime. Chemical Communications, 2010, 46, 4788.	2.2	57
165	Water-soluble Poly(4-styrenesulfonic acid-co-maleic acid)-stabilized Nickel(0) and Cobalt(0) Nanoclusters as Highly Active Catalysts in Hydrogen Generation from the Hydrolysis of Ammonia-Borane. Materials Research Society Symposia Proceedings, 2009, 1217, 1.	0.1	0
166	A Density Functional Study of Ni ₂ and Ni ₁₃ Nanoclusters. Journal of Computational and Theoretical Nanoscience, 2009, 6, 867-872.	0.4	13
167	A novel, simple, organic free preparation and characterization of water dispersible photoluminescent Cu2O nanocubes. Materials Letters, 2009, 63, 400-402.	1.3	36
168	Preparation and characterization of zeolite framework stabilized cuprous oxide nanoparticles. Materials Letters, 2009, 63, 1033-1036.	1.3	29
169	Synthesis and characterization of transition metal complexes of thiopheneâ€2â€methylamine: Xâ€ray crystal structure of palladium (II) and platinum (II) complexes and use of palladium(II) complexes as preâ€catalyst in Heck and Suzuki crossâ€coupling reactions. Applied Organometallic Chemistry, 2009, 23, 467-475.	1.7	31
170	New route to synthesis of PVPâ€stabilized palladium(0) nanoclusters and their enhanced catalytic activity in Heck and Suzuki cross oupling reactions. Applied Organometallic Chemistry, 2009, 23, 498-503.	1.7	45
171	Testing catalytic activity of ruthenium(III) acetylacetonate in the presence of trialkylphosphite or trialkylphosphine in hydrogen generation from the hydrolysis of sodium borohydride. Journal of Molecular Catalysis A, 2009, 310, 59-63.	4.8	17
172	Water-soluble poly(4-styrenesulfonic acid-co-maleic acid) stabilized ruthenium(0) and palladium(0) nanoclusters as highly active catalysts in hydrogen generation from the hydrolysis of ammonia–borane. International Journal of Hydrogen Energy, 2009, 34, 6304-6313.	3.8	184
173	Water soluble laurate-stabilized ruthenium(0) nanoclusters catalyst for hydrogen generation from the hydrolysis of ammonia-borane: High activity and long lifetime. International Journal of Hydrogen Energy, 2009, 34, 7223-7230.	3.8	180
174	Improved synthesis of fine zinc borate particles using seed crystals. Journal of Crystal Growth, 2009, 311, 1545-1552.	0.7	32
175	Synthesis and characterization of new bis(diphenylphosphino)aniline ligands and their complexes: X-ray crystal structure of palladium(II) and platinum(II) complexes, and application of palladium(II) complexes as pre-catalysts in Heck and Suzuki cross-coupling reactions. Polyhedron, 2009, 28, 2313-2320.	1.0	32
176	Synthesis and characterizations of N,N,N′,N′-tetrakis (diphenylphosphino)ethylendiamine derivatives: Use of palladium(II) complex as pre-catalyst in Suzuki coupling and Heck reactions. Journal of Organometallic Chemistry, 2009, 694, 731-736.	0.8	38
177	Water soluble laurate-stabilized rhodium(0) nanoclusters catalyst with unprecedented catalytic lifetime in the hydrolytic dehydrogenation of ammonia-borane. Applied Catalysis A: General, 2009, 369, 53-59.	2.2	132
178	Zeolite framework stabilized rhodium(0) nanoclusters catalyst for the hydrolysis of ammonia-borane in air: Outstanding catalytic activity, reusability and lifetime. Applied Catalysis B: Environmental, 2009, 89, 104-110.	10.8	162
179	Intrazeolite cobalt(0) nanoclusters as low-cost and reusable catalyst for hydrogen generation from the hydrolysis of sodium borohydride. Applied Catalysis B: Environmental, 2009, 91, 21-29.	10.8	114
180	Enhancement of catalytic activity by increasing surface area in heterogeneous catalysis. Applied Surface Science, 2009, 256, 1272-1277.	3.1	79

SAIM Ã-ZKAR

#	Article	IF	CITATIONS
181	Zeolite-Confined Ruthenium(0) Nanoclusters Catalyst: Record Catalytic Activity, Reusability, and Lifetime in Hydrogen Generation from the Hydrolysis of Sodium Borohydride. Langmuir, 2009, 25, 2667-2678.	1.6	147
182	Dimethylammonium Hexanoate Stabilized Rhodium(0) Nanoclusters Identified as True Heterogeneous Catalysts with the Highest Observed Activity in the Dehydrogenation of Dimethylamineâ^Borane. Inorganic Chemistry, 2009, 48, 8955-8964.	1.9	114
183	In situ-generated PVP-stabilized palladium(0) nanocluster catalyst in hydrogen generation from the methanolysis of ammonia–borane. Physical Chemistry Chemical Physics, 2009, 11, 10519.	1.3	124
184	Model Ziegler-Type Hydrogenation Catalyst Precursors, [(1,5-COD)M(μ-O ₂ C ₈ H ₁₅)] ₂ (M = Ir and Rh): Synthesis, Characterization, and Demonstration of Catalytic Activity En Route to Identifying the True Industrial Hydrogenation Catalysts. Inorganic Chemistry, 2009, 48, 1114-1121.	1.9	17
185	Zeolite confined nanostructured dinuclear ruthenium clusters: preparation, characterization and catalytic properties in the aerobic oxidation of alcohols under mild conditions. Journal of Materials Chemistry, 2009, 19, 7112.	6.7	29
186	Hydrogen Generation from the Hydrolysis of Ammonia-borane and Sodium Borohydride Using Water-soluble Polymer-stabilized Cobalt(0) Nanoclusters Catalyst. Energy & Fuels, 2009, 23, 3517-3526.	2.5	178
187	Synthesis and characterizations of N,N-bis(diphenylphosphino)ethylaniline derivatives and X-ray crystal structure of palladium (II), platinum (II) complexes. Polyhedron, 2008, 27, 196-202.	1.0	38
188	Ruthenium(III) acetylacetonate: A homogeneous catalyst in the hydrolysis of sodium borohydride. Journal of Molecular Catalysis A, 2008, 286, 87-91.	4.8	59
189	Synthesis and characterization of poly(N-vinyl-2-pyrrolidone)-stabilized water-soluble nickel(0) nanoclusters as catalyst for hydrogen generation from the hydrolysis of sodium borohydride. Journal of Molecular Catalysis A, 2008, 295, 39-46.	4.8	62
190	Intrazeolite Ruthenium(0) Nanoclusters: a Superb Catalyst for the Hydrogenation of Benzene and the Hydrolysis of Sodium Borohydride. Langmuir, 2008, 24, 7065-7067.	1.6	93
191	Synthesis, Characterization, Crystal and Molecular Structure of 1,5-Dihydro-2H-cyclopenta[1,2-b:5,4-b′]dipyridin-2-imine. Helvetica Chimica Acta, 2007, 90, 1211-1217.	1.0	5
192	Synthesis, characterization and crystal structure of bis(acetylacetonato)dimethanolnickel(II): [Ni(acac)2(MeOH)2]. Inorganic Chemistry Communication, 2007, 10, 1121-1123.	1.8	12
193	Hydrogen generation from the hydrolysis of sodium borohydride by using water dispersible, hydrogenphosphate-stabilized nickel(0) nanoclusters as catalyst. International Journal of Hydrogen Energy, 2007, 32, 1707-1715.	3.8	109
194	Synthesis and characterizations of 3,3′-bis(diphenylphosphinoamine)-2,2′-bipyridine and 3,3′-bis(diphenylphosphinite)-2,2′-bipyridine and their chalcogenides. Polyhedron, 2007, 26, 3373-3378.	1.0	48
195	Synthesis, characterization, and electrochemistry of tetracarbonyl(6-ferrocenyl-2,2′-bipyridine)tungsten(0). Journal of Organometallic Chemistry, 2007, 692, 1983-1989.	0.8	12
196	Simulation of continuous boric acid slurry reactors in series by microfluid and macrofluid models. Journal of Crystal Growth, 2007, 306, 240-247.	0.7	2
197	Synthesis and Spectroscopic Characterization of Group 6 Pentacarbonyl(4-substituted) Tj ETQq1 1 0.784314 rgB	BT /Overloo 0.7	ck 10 Tf 50 10
198	Synthesis, characterization, crystal and molecular structure of diphenyloxophosphinoethylenediamines. Polyhedron, 2006, 25, 3133-3137.	1.0	23

#	Article	IF	CITATIONS
199	Substitution kinetics of W(CO)5(η2-bis(trimethylsilyl)ethyne) with triphenylbismuthine. Journal of Organometallic Chemistry, 2006, 691, 3267-3273.	0.8	6
200	Carbonyltungsten(0) complexes of acryloylferrocene: Synthesis and characterization. Journal of Organometallic Chemistry, 2006, 691, 3293-3297.	0.8	4
201	Synthesis and electrochemistry of Group 6 tetracarbonyl (N,Nâ€2-bis(ferrocenylmethylene)ethylenediamine)metal(0) complexes. Journal of Organometallic Chemistry, 2006, 691, 5030-5037.	0.8	6
202	Gypsum crystal size distribution in four continuous flow stirred slurry boric acid reactors in series compared with the batch. Journal of Crystal Growth, 2006, 290, 197-202.	0.7	6
203	Water dispersible acetate stabilized ruthenium(0) nanoclusters as catalyst for hydrogen generation from the hydrolysis of sodium borohyride. Journal of Molecular Catalysis A, 2006, 258, 95-103.	4.8	101
204	A stable carbonyl–pyrazine–metal(0) complex: Synthesis and characterization of cis-tetracarbonylpyrazinetrimethylphosphitetungsten(0). Journal of Organometallic Chemistry, 2006, 691, 2734-2738.	0.8	16
205	Bis(trimethylsilyl)ethyne as a Two-Electron Alkyne Ligand in Group 6 Carbonylmetal(0) Complexes: Photochemical Syntheses and Comprehensive Characterization of M(CO)5(ŀ2-Me3SiCâ‹®CSiMe3) (M = W,) Tj E	TQ q1 1 0.7	78 4 214 rgBT
206	Pentacarbonyl(2-ferrocenylpyridine)metal(0) complexes of Group 6 elements. Synthesis and characterization. Transition Metal Chemistry, 2005, 30, 53-57.	0.7	4
207	Iridium(0) Nanocluster, Acid-Assisted Catalysis of Neat Acetone Hydrogenation at Room Temperature:Â Exceptional Activity, Catalyst Lifetime, and Selectivity at Complete Conversion. Journal of the American Chemical Society, 2005, 127, 4800-4808.	6.6	79
208	Hydrogen generation from hydrolysis of sodium borohydride using Ru(0) nanoclusters as catalyst. Journal of Alloys and Compounds, 2005, 404-406, 728-731.	2.8	202
209	The hydrogenphosphate complex of (1,5-cyclooctadiene)iridium(I), {[Bu4N][(1,5-COD)Ir·HPO4]}n: synthesis, spectroscopic characterization, and ES-MS of a new, preferred precursor to HPO42â~ and Bu4N+ stabilized Ir(0)n nanoclusters. Journal of Organometallic Chemistry, 2004, 689, 493-501.	0.8	11
210	Pentacarbonyl(2,6-diaminopyridine)chromium(0): synthesis and molecular structure. Journal of Organometallic Chemistry, 2004, 689, 2319-2323.	0.8	13
211	Crystal and molecular structure of bis(acetylacetone)ethylenediimine: intramolecular ionic hydrogen bonding in solid state. Journal of Molecular Structure, 2004, 688, 207-211.	1.8	26
212	Molecular insights for how preferred oxoanions bind to and stabilize transition-metal nanoclusters: a tridentate, C3 symmetry, lattice size-matching binding model. Coordination Chemistry Reviews, 2004, 248, 135-146.	9.5	87
213	Pentacarbonyl(2,6-diaminopyridine)chromium(0): synthesis and molecular structure. Journal of Organometallic Chemistry, 2004, 689, 2319-2319.	0.8	0
214	Pentacarbonyl(η2-vinylferrocene)metal(0) complexes of Group 6 elements: synthesis and characterization. Journal of Organometallic Chemistry, 2003, 688, 62-67.	0.8	11
215	Reaction of pentacarbonyl(η2-bis(trimethylsilyl)ethyne)tungsten(0) with tricyclohexylphosphine: X-ray structure of pentacarbonyltricyclohexylphosphinetungsten(0). Journal of Organometallic Chemistry, 2003, 688, 68-74.	0.8	8
216	Transition-Metal Nanocluster Stabilization Fundamental Studies:  Hydrogen Phosphate as a Simple, Effective, Readily Available, Robust, and Previously Unappreciated Stabilizer for Well-Formed, Isolable, and Redissolvable Ir(0) and Other Transition-Metal Nanoclusters. Langmuir, 2003, 19, 6247-6260.	1.6	72

#	Article	IF	CITATIONS
217	Photo-Induced Chromiumcarbonyl Catalyzed Hydrosilylation of Conjugated Dienes with Triethylsilane: The Solvent Effect. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2003, 58, 644-648.	0.3	3
218	Nanocluster Formation and Stabilization Fundamental Studies. 2. Proton Sponge as an Effective H+Scavenger and Expansion of the Anion Stabilization Ability Series. Langmuir, 2002, 18, 7653-7662.	1.6	58
219	Nanocluster Formation and Stabilization Fundamental Studies:Â Ranking Commonly Employed Anionic Stabilizers via the Development, Then Application, of Five Comparative Criteria. Journal of the American Chemical Society, 2002, 124, 5796-5810.	6.6	283
220	Fine-tuning the mechanical properties of hydroxyl-terminated polybutadiene/ammonium perchlorate-based composite solid propellants by varying the NCO/OH and triol/diol ratios. Journal of Applied Polymer Science, 2002, 84, 2072-2079.	1.3	14
221	Substitution kinetics of Cr(CO)5(η2-Z-cyclooctene) with tetracyanoethylene. Journal of Organometallic Chemistry, 2002, 658, 274-280.	0.8	6
222	Additional Investigations of a New Kinetic Method To Follow Transition-Metal Nanocluster Formation, Including the Discovery of Heterolytic Hydrogen Activation in Nanocluster Nucleation Reactions. Chemistry of Materials, 2001, 13, 312-324.	3.2	138
223	Dissociative CO Photosubstitution in M(CO)4(1,4-diazabutadiene) Complexes (M = W, Mo) by an Olefin Affording Novel fac-M(CO)3(1,4-diazabutadiene)(η2-olefin) Derivatives. Organometallics, 2001, 20, 4775-4792.	1.1	20
224	Aging of HTPB/AP-based composite solid propellants, depending on the NCO/OH and triol/diol ratios. Journal of Applied Polymer Science, 2001, 79, 959-964.	1.3	26
225	Curing characteristics of glycidyl azide polymer-based binders. Journal of Applied Polymer Science, 2001, 80, 65-70.	1.3	20
226	Improved adhesive properties and bonding performance of HTPB-based polyurethane elastomer by using aziridine-type bond promoter. Journal of Applied Polymer Science, 2001, 80, 806-814.	1.3	14
227	Kinetics of polyurethane formation between glycidyl azide polymer and a triisocyanate. Journal of Applied Polymer Science, 2001, 81, 918-923.	1.3	25
228	Kinetics of gypsum formation and growth during the dissolution of colemanite in sulfuric acid. Journal of Crystal Growth, 2001, 231, 559-567.	0.7	52
229	Thermal characterization of glycidyl azide polymer (GAP) and GAP-based binders for composite propellants. Journal of Applied Polymer Science, 2000, 77, 538-546.	1.3	88
230	Crystallization kinetics of ammonium perchlorate in MSMPR crystallizer. Journal of Crystal Growth, 2000, 208, 533-540.	0.7	28
231	Friedel–Crafts alkylation of ferrocene with Z-cyclooctene and cyclohexene. Journal of Organometallic Chemistry, 1999, 587, 122-126.	0.8	42
232	Ligand substitution kinetics in M(CO)4(η2:2-norbornadiene) complexes (M=Cr, Mo, W): displacement of norbornadiene by bis(diphenylphosphino)alkanes. Journal of Organometallic Chemistry, 1999, 590, 208-216.	0.8	2
233	Ligand substitution kinetics in M(CO)4 (η2:2-1,5-cyclooctadiene) complexes (M=Cr, Mo, W) — substitution of 1,5-cyclooctadiene by bis(diphenylphosphino)alkanes. Inorganica Chimica Acta, 1999, 284, 229-236.	1.2	11
234	Development of MTV Compositions as Igniter for HTPB/AP Based Composite Propellants. Propellants, Explosives, Pyrotechnics, 1999, 24, 65-69.	1.0	15

#	Article	IF	CITATIONS
235	Sequential Photosubstitution of Carbon Monoxide by (E)-Cyclooctene in Hexacarbonyltungsten: Structural Aspects, Multistep Photokinetics, and Quantum Yields. Organometallics, 1999, 18, 3278-3293.	1.1	32
236	The growth and dissolution of ammonium perchlorate crystals in a fluidized bed crystallizer. Journal of Crystal Growth, 1998, 194, 220-227.	0.7	16
237	Mechanical and burning properties of highly loaded composite propellants. Journal of Applied Polymer Science, 1998, 67, 1457-1464.	1.3	28
238	Effect of fillers on thermal and mechanical properties of polyurethane elastomer. Journal of Applied Polymer Science, 1998, 68, 1057-1065.	1.3	78
239	Modeling and rheology of HTPB based composite solid propellants. Polymer Composites, 1998, 19, 463-472.	2.3	15
240	Electrochemical Study of Tricarbonyl(η6-cyclooctatetraene)metal(0) Complexes of the Group 6 Elements. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 1998, 53, 875-880.	0.3	0
241	Displacement kinetics of 1,5-cyclooctadiene from M(CO)4(η2:2-1,5-cyclooctadiene) (M = Cr, Mo, W) by bis(diphenylphosphino)alkane. Pure and Applied Chemistry, 1997, 69, 193-198.	0.9	3
242	Tetracarbonyl(η2:2-1,5-cyclooctadiene)molybdenum(0). Acta Crystallographica Section C: Crystal Structure Communications, 1997, 53, 185-187.	0.4	5
243	Photocatalytic hydrosilylation of conjugated dienes with triethylsilane in the presence of Cr(CO)5L (L) Tj ETQq1	1 0,78431 0.8	14 rgBT /Ove
244	Mechanical properties of HTPB-IPDI-based elastomers. Journal of Applied Polymer Science, 1997, 64, 2347-2354.	1.3	73
245	Adhesion of an HTPB-IPDI-based liner elastomer to composite matrix and metal case. Journal of Applied Polymer Science, 1997, 64, 2355-2362.	1.3	9
246	Kinetic study of the reaction between hydroxyl-terminated polybutadiene and isophorone diisocyanate in bulk by quantitative FTIR spectroscopy. Journal of Applied Polymer Science, 1997, 66, 1979-1983.	1.3	54
247	Mechanical properties of HTPB-IPDI-based elastomers. , 1997, 64, 2347.		3
248	Photocatalytic Hydrosilylation of Conjugated Dienes with Triethylsilane in the Presence of Cr(CO)6. Organometallics, 1996, 15, 604-614.	1.1	36
249	Use of Organometallics and Metal Carbonyls for Intrazeolite Cluster Formation. , 1995, , 79-100.		0
250	Synthesis and Spectroscopic Studies of Pentacarbonylfumaronitrile-chromium(0), -molybdenum(0), and -tungsten(0). Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 1994, 49, 1059-1062.	0.3	3
251	Synthesis and Spectroscopic Study of Pentacarbonyl(η2-tetracyanoethylene) Metal(0) Complexes of the Group 6 B Elements. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 1994, 49, 717-720.	0.3	5
252	Retardation effect of trimethyl phosphite on chelate ring closure of 2,2′-bipyridine (bipy) in cis-[W(CO)4{P(OMe)3}(bipy)]. Journal of the Chemical Society Dalton Transactions, 1994, , 2239-2241.	1.1	3

#	Article	IF	CITATIONS
253	Displacement Kinetics of 1,5-Cyclooctadiene from Mo(CO)4(.eta.2:2 1,5-cyclooctadiene) by Bis(diphenylphosphino)methane. Inorganic Chemistry, 1994, 33, 2439-2443.	1.9	14
254	Pentacarbonyl(1,4-diisopropyl-1,4-diazabutadiene)chromium: Isolation and Reactivity of the Monodentate Intermediate en Route to Cr(CO)4(iprop-DAB) Chelate Ring Closure. Organometallics, 1994, 13, 2937-2943.	1.1	6
255	Spectral characterization and thermal behaviour of crosslinked poly(hydroxyethylmethacrylate) beads prepared by suspension polymerization. Polymer International, 1993, 30, 357-361.	1.6	18
256	Guest-host interactions in sodium zeolite Y: structural and dynamical 23Na double-rotation NMR study of water, trimethylphosphine, molybdenum hexacarbonyl, and Mo(CO)4(PMe3)2 adsorption in Na56Y. Journal of the American Chemical Society, 1993, 115, 563-568.	6.6	39
257	[μ-Bis(dialkylphosphino)alkane]-bis[pentacarbonylmetal(0)] Complexes of the Group 6 B Elements: Synthesis and Spectroscopic Study. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 1993, 48, 37-43.	0.3	6
258	Notizen: Photocatalytic 1,4-Hydrosilation of 1,3-Butadiene with Triethylsilane. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 1993, 48, 539-540.	0.3	11
259	Notizen: ¹³ C NMR Spectroscopic Study of Pentacarbonylacetonitrilemetal(0) Complexes of the Group 6 B Elements. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 1993, 48, 1431-1432.	0.3	4
260	Intrazeolite topotaxy: sodium-23 double-rotation NMR study of transition-metal hexacarbonyls and oxides encapsulated in sodium zeolite Y. The Journal of Physical Chemistry, 1992, 96, 5949-5953.	2.9	34
261	SYNTHESIS AND STEREOCHEMISTRY OF PENTACARBONYL(PHOSPHOLE)METAL(0)- AND TETRACARBONYLBIS(PHOSPHOLE)METAL(0) COMPLEXES OF 6B ELEMENTS. Phosphorus, Sulfur and Silicon and the Related Elements, 1992, 70, 339-349.	0.8	3
262	Double Rotation 23Na NMR Study of Guest-Host Interactions and Nanoscale Assemblies in Sodium Zeolite Y. Materials Research Society Symposia Proceedings, 1992, 277, 113.	0.1	2
263	Notizen: Synthesis and NM R Study of (η ⁶ -1,4-diphenyl-1,3-butadiene)tricarbonylchromium(0). Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 1992, 47, 1051-1053.	0.3	1
264	Smart zeolites: new forms of tungsten and molybdenum oxides. Accounts of Chemical Research, 1992, 25, 553-560.	7.6	60
265	Title is missing!. Journal of the American Chemical Society, 1992, 114, 8953-8963.	6.6	34
266	Extraframework sodium cation sites in sodium zeolite Y probed by sodium-23 double-rotation NMR. Journal of the American Chemical Society, 1992, 114, 4907-4908.	6.6	30
267	Photooxidation of hexacarbonylmolybdenum(0) in sodium zeolite Y to yield redox-interconvertible molybdenum(VI) oxide and molybdenum(IV) oxide monomers. Chemistry of Materials, 1992, 4, 1380-1388.	3.2	32
268	Zeolates: a coordination chemistry view of metal-ligand bonding in zeolite guest-host inclusion compounds. Chemistry of Materials, 1992, 4, 511-521.	3.2	63
269	Topotactic Kinetics in Zeolite Nanoreaction Chambers. ACS Symposium Series, 1992, , 314-332.	0.5	5

11.1 48

#	Article	IF	CITATIONS
271	Intrazeolite Semiconductor Quantum Dots and Quantum Supralattices. ACS Symposium Series, 1991, , 554-581.	0.5	11
272	Intrazeolite metal carbonyl kinetics:12CO substitution in Mo(12CO)6-Na56Y by PMe3and13CO. Journal of the Chemical Society Chemical Communications, 1991, , 141-143.	2.0	7
273	Intrazeolite carbonyl(.eta.5-cyclopentadienyl)dihydridoiridium(III) (CpIr(CO)H2-M56Y, where M = H, Li,) Tj ETQq1	0.78431	4 rgBT /Ov∈
274	Intrazeolite semiconductors: sodium-23 MAS NMR, thallium(1+) luminescence quenching and far-IR studies of acid-base precursor chemistry in zeolite Y. The Journal of Physical Chemistry, 1991, 95, 9448-9456.	2.9	18
275	Topotactic organometallic chemistry: intrazeolite dicarbonylcyclopentadienyl cobalt-M56Y, where M = H, Li, Na, K, Rb, and Cs. The Journal of Physical Chemistry, 1991, 95, 4463-4476.	2.9	14
276	Intrazeolite phototopotaxy: EXAFS analysis of precursor 8{W(CO)6}-Na56Y and photooxidation products 16(WO3)-Na56Y and 28(WO3)-Na56Y. The Journal of Physical Chemistry, 1991, 95, 5276-5281.	2.9	28
277	Doping And Band-Gap Engineering Of An Intrazeolite Tungsten(Vi) Oxide Supralatiice. Materials Research Society Symposia Proceedings, 1991, 233, 109.	0.1	3
278	Photoinduced Reactions of Cr(CO) ₃ â€Coordinated 1,3,5â€Cycloheptatriene: [6 + 2] Cycloaddition with an Alkyne and Catalytic 1,6â€Hydrogenation. Chemische Berichte, 1991, 124, 2857-2861.	0.2	57
279	A study of nanostructure assemblies and guest-host interactions in sodium zeolite-Y using23Na double-rotation NMR. Nanotechnology, 1991, 2, 182-186.	1.3	1
280	Sodium-23 MAS-NMR and FT-mid-far-IR cation/proton probes of the phototopotactic oxidation of intrazeolite hexacarbonyltungsten(0) to tungsten(VI) oxide quantum dots and supralattices: exploring anchoring sites and aggregation processes. The Journal of Physical Chemistry, 1990, 94, 6939-6943.	2.9	22
281	Proton-loaded zeolites. 1. HX(X = Cl, Br, I) in sodium zeolite Y archetype: packaged acids on the road to intrazeolite semiconductors. The Journal of Physical Chemistry, 1990, 94, 7562-7571.	2.9	25
282	Intrazeolite metal carbonyl phototopotaxy: from tungsten(VI) oxide quantum dots to a zero-dimensional semiconductor quantum supralattice. The Journal of Physical Chemistry, 1990, 94, 7556-7561.	2.9	35
283	Defining the stoicheiometry of a subcarbonylmetal guest using mixed vibrational isotope labelling techniques. Journal of the Chemical Society Chemical Communications, 1990, , 841-843.	2.0	2
284	Intrazeolite metal carbonyl topotaxy. A comprehensive structural and spectroscopic study of intrazeolite Group VI metal hexacarbonyls and subcarbonyls. Journal of the American Chemical Society, 1990, 112, 9575-9586.	6.6	89
285	Proton-loaded zeolites. 3. H56Y, ALPO-5, and SiO2-Y: anhydrous HX versus aqueous HX treatment of zeolite Y. The Journal of Physical Chemistry, 1990, 94, 8297-8302.	2.9	3
286	Proton-loaded zeolites. 2. Dehydrohalogenation versus decationization kinetics: cation and acidity effects. The Journal of Physical Chemistry, 1990, 94, 8289-8296.	2.9	6
287	Electrochemistry of tricarbonyl(η6-1,3,5-cycloheptatriene)metal(O) complexes of the group 6B elements in aprotic media. Inorganica Chimica Acta, 1989, 156, 281-284.	1.2	1
288	Photoreactions of group 6 metal carbonyls with olefins. Pure and Applied Chemistry, 1988, 60, 1017-1024.	0.9	11

#	Article	IF	CITATIONS
289			