
Artur Shugurov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5411647/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanical and tribological properties of Ti-Al-Ta-N/TiAl and Ti-Al-Ta-N/Ta multilayer coatings deposited by DC magnetron sputtering. Surface and Coatings Technology, 2022, 441, 128582.	2.2	8
2	Effect of Ta Content on Scratching Behavior of Ti-Al-Ta-N Coatings on Titanium Substrate. Metals, 2022, 12, 1017.	1.0	2
3	Molecular dynamics study of dislocation-twin boundary interaction in titanium subjected to scratching. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 800, 140327.	2.6	9
4	The Effect of Multilayer Architecture and Ta Alloying on the Mechanical Performance of Ti-Al-N Coatings under Scratching and Uniaxial Tension. Metals, 2021, 11, 1307.	1.0	0
5	Effect of Ta alloying on isothermal oxidation behavior of DC magnetron sputtered Ti1-xAlxN coatings on titanium substrate. Surface and Coatings Technology, 2021, 421, 127488.	2.2	6
6	Microstructure and Mechanical Properties of Titanium Alloys. Metals, 2021, 11, 1617.	1.0	6
7	Deformation Behavior of Wrought and EBAM Ti-6Al-4V under Scratch Testing. Metals, 2021, 11, 1882.	1.0	7
8	Tuning of mechanical properties of Ti1â^'xAlxN coatings through Ta alloying. Surface and Coatings Technology, 2020, 382, 125219.	2.2	16
9	Mechanisms of Stress Generation in Thin Films and Coatings. Technical Physics, 2020, 65, 1881-1904.	0.2	16
10	Recovery of Scratch Grooves in Ti-6Al-4V Alloy Caused by Reversible Phase Transformations. Metals, 2020, 10, 1332.	1.0	9
11	Chemical bonding analysis in Ti1––Al Ta N solid solutions. Surface and Coatings Technology, 2020, 395, 125802.	2.2	15
12	Improvement of Thermal Cycling Resistance of AlxSi1â^'xN Coatings on Cu Substrates by Optimizing Al/Si Ratio. Materials, 2019, 12, 2249.	1.3	3
13	The role of nanoscale strain-induced defects in the sharp increase of low-temperature toughness in low-carbon and low-alloy steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 768, 138491.	2.6	19
14	Effect of Nanoscale Mesoscopic Structural States Associated with Lattice Curvature on the Mechanical Behavior of Fe-Cr-Mn Austenitic Steel. Physical Mesomechanics, 2019, 22, 382-391.	1.0	14
15	Mesoscopic Structural States at the Nanoscale in Surface Layers of Titanium and Its Alloy Ti-6Al-4V in Ultrasonic and Electron Beam Treatment. Physical Mesomechanics, 2019, 22, 345-354.	1.0	30
16	The Influence of Nitrogen Partial Pressure on the Composition, Microstructure, and Mechanical Characteristics of Ti1 –x–yAlxTаyN Coatings Obtained by Reactive Magnetron Sputtering. Technical Physics Letters, 2019, 45, 418-422.	0.2	2
17	The effect of phase transformations on the recovery of pulsed electron beam irradiated Ti-6Al-4V titanium alloy during scratching. Journal of Alloys and Compounds, 2019, 795, 275-283.	2.8	11
18	Effect of microstructure on mechanical properties and deformation behavior of Ti–6Al–4V alloy during scratch testing. AlP Conference Proceedings, 2019, , .	0.3	0

ARTUR SHUGUROV

#	Article	IF	CITATIONS
19	Effect of Ta content on fracture of Ti1–x–yAlxTayN coatings under uniaxial tension. AIP Conference Proceedings, 2019, , .	0.3	0
20	The Role of Grain Boundaries in Rotational Deformation in Polycrystalline Titanium under Scratch Testing. Physical Mesomechanics, 2019, 22, 365-374.	1.0	19
21	Investigation of oxidation resistance of Ti1–xAlxN/Ti1–xAlx multilayers. AIP Conference Proceedings, 2019, , .	0.3	Ο
22	Numerical study of atomic scale deformation mechanisms of Ti grains with different crystallographic orientation subjected to scratch testing. Applied Surface Science, 2019, 471, 318-327.	3.1	36
23	Scratch testing of polycrystalline titanium. AlP Conference Proceedings, 2018, , .	0.3	Ο
24	Investigation of adhesive behavior of Ti-Al-N/Ti-Al multilayers by scratch testing. AIP Conference Proceedings, 2018, , .	0.3	1
25	Enhancement of thermal cycling resistance of EB-PVD YSZ and CeO2 thermal barrier coatings by deposition of a Ni-Al bond coat. AIP Conference Proceedings, 2018, , .	0.3	0
26	Numerical study of plastic ploughing of nanosized polycrystalline titanium under scratching. AIP Conference Proceedings, 2018, , .	0.3	0
27	The effect of deposition parameters on microstructure and mechanical properties of Ti-Al-Ta-N coatings. AIP Conference Proceedings, 2018, , .	0.3	0
28	Elastic recovery of nanostructured surface layer of Ti-6Al-4V titanium alloy after scratch-test. Journal of Physics: Conference Series, 2018, 1115, 032056.	0.3	0
29	Mechanical properties and tribological behavior of magnetron sputtered TiAlN/TiAl multilayer coatings. Surface and Coatings Technology, 2018, 353, 254-262.	2.2	39
30	The effect of crystallographic grain orientation of polycrystalline Ti on ploughing under scratch testing. Wear, 2018, 408-409, 214-221.	1.5	45
31	Scale invariance of structural transformations in plastically deformed nanostructured solids. Physical Mesomechanics, 2017, 20, 55-68.	1.0	23
32	Effect of local curvature of the coating-substrate interface on deformation and fracture of ceramic coatings under uniaxial tension. Physical Mesomechanics, 2017, 20, 472-479.	1.0	5
33	Effects of nitrogen and argon ion implantations on surface morphology, microstructure, and mechanical properties of Ti-Al-N coatings. AIP Conference Proceedings, 2017, , .	0.3	0
34	Study of crack resistance of TiAlN coatings by scratch testing. Physical Mesomechanics, 2017, 20, 185-192.	1.0	19
35	The effect of Al intermediate layer on thermal resistance of EB-PVD yttria-stabilized zirconia coatings on titanium substrate. AlP Conference Proceedings, 2017, , .	0.3	0
36	Wear of electroplated gold-based coatings. Physical Mesomechanics, 2016, 19, 407-419.	1.0	5

ARTUR SHUGUROV

#	Article	IF	CITATIONS
37	Structural modification of TiAlN coatings by preliminary Ti Ion bombardment of a steel substrate. Technical Physics, 2016, 61, 409-415.	0.2	9
38	The effect of laser treatment of WC-Co coatings on their failure under thermal cycling. AlP Conference Proceedings, 2016, , .	0.3	1
39	Fracture toughness and oxidation resistance of Ti-Al-N coatings on stainless steel substrates. AIP Conference Proceedings, 2016, , .	0.3	1
40	The effect of coating/substrate interface curvature on fracture of Si-Al-N coatings subjected to mechanical loading. AIP Conference Proceedings, 2015, , .	0.3	0
41	Improvement of the wear resistance of electroplated Au-Ni coatings by Zr ion bombardment of Ni-B sublayer. AIP Conference Proceedings, 2015, , .	0.3	0
42	The study of crack resistance of TiAlN coatings under mechanical loading and thermal cycle testing. AIP Conference Proceedings, 2015, , .	0.3	1
43	PECVD synthesis, optical and mechanical properties of silicon carbon nitride films. Applied Surface Science, 2015, 339, 102-108.	3.1	40
44	Effect of the number of layers in Zr-Y-O/Si-Al-N multilayer coatings on their mechanical properties and wear resistance. Journal of Friction and Wear, 2014, 35, 426-433.	0.1	4
45	Effect of a hard sublayer on contact interaction and wear behavior of electrodeposited gold-based coatings. , 2014, , .		1
46	Mechanisms of stress generation and relaxation in thin films and coatings. AIP Conference Proceedings, 2014, , .	0.3	1
47	Wrinkling of the metal–polymer bilayer: the effect of periodical distribution of stresses and strains. RSC Advances, 2014, 4, 7389.	1.7	15
48	Effect of local curvature of internal and external interfaces on mass transfer responsible for thin film degradation. Physical Mesomechanics, 2013, 16, 348-354.	1.0	5
49	Effect of the nanostructuring of a Cu substrate on the fracture of heat-resistant Si-Al-N coatings during uniaxial tension. Technical Physics, 2012, 57, 779-786.	0.2	18
50	Fractal analysis of the evolution of friction surfaces of galvanic AuNi coatings. Technical Physics Letters, 2012, 38, 484-487.	0.2	5
51	Sclerometric study of galvanic AuNi and AuCo coatings. Technical Physics Letters, 2011, 37, 223-225.	0.2	9
52	Viscoelastic wrinkling in compression-stressed metal film-polymer sublayer system. Technical Physics Letters, 2011, 37, 896-899.	0.2	1
53	Strain mechanisms in annealed thin copper films on a viscoelastic sublayer. Physical Mesomechanics, 2011, 14, 49-56.	1.0	1
54	The role of stress distribution at the film/barrier interface in formation of copper silicides. Semiconductors, 2010, 44, 116-122.	0.2	8

ARTUR SHUGUROV

#	Article	IF	CITATIONS
55	Elastic deformation of Ti films during alternating bending. Technical Physics, 2010, 55, 1583-1587.	0.2	2
56	Mechanisms of periodic deformation of the film-substrate system under compressive stress. Physical Mesomechanics, 2010, 13, 79-87.	1.0	12
57	Multi-level deformation of thin films caused by stress–strain distribution at the film-substrate interface. Procedia Engineering, 2009, 1, 23-26.	1.2	4
58	Specific features of the determination of the mechanical characteristics of thin films by the nanoindentation technique. Physics of the Solid State, 2008, 50, 1050-1055.	0.2	25
59	Scaling effects in structural-phase self-organization at the "thin film - substrate―interface. Physical Mesomechanics, 2007, 10, 117-128.	1.0	9
60	Mechanical Properties of Thin Ag Films on a Silicon Substrate Studied Using the Nanoindentation Technique. Physics of the Solid State, 2005, 47, 2055.	0.2	32
61	Fractal analysis of electromigration-induced changes of surface topography in Au conductor lines. Surface Science, 2003, 524, 191-198.	0.8	14
62	Surface Morphology, Microstructure and Mechanical Properties of Thin Ag Films. Journal of Korean Powder Metallurgy Institute, 2003, 10, 190-194.	0.2	1
63	Effect of dopants and interlayers on the growth of thin insulating films. Theoretical and Applied Fracture Mechanics, 2001, 36, 51-56.	2.1	Ο
64	Effect of sulfur and selenium on the surface relief of insulating films and electrical characteristics of metal-insulator-p-GaAs structures. Semiconductors, 2001, 35, 80-85.	0.2	2
65	Smoothening of thin film surfaces. , 0, , .		Ο
66	Electromigration-induced damage of Au conductor lines. , 0, , .		0
67	Measuring complex for thin films degradation investigations under various external actions. , O, , .		Ο
68	Grain growth and thermal stability of Ag thin films. , 0, , .		1

5