List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5411260/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fabrication of Ag@SiO ₂ @Y ₂ O ₃ :Er Nanostructures for Bioimaging: Tuning of the Upconversion Fluorescence with Silver Nanoparticles. Journal of the American Chemical Society, 2010, 132, 2850-2851.	13.7	463
2	Mesoporous Multifunctional Upconversion Luminescent and Magnetic "Nanorattle―Materials for Targeted Chemotherapy. Nano Letters, 2012, 12, 61-67.	9.1	360
3	Surface-Enhanced Raman Spectroscopy for DNA Detection by Nanoparticle Assembly onto Smooth Metal Films. Journal of the American Chemical Society, 2007, 129, 6378-6379.	13.7	302
4	Antibiotic-loaded nanoparticles targeted to the site of infection enhance antibacterial efficacy. Nature Biomedical Engineering, 2018, 2, 95-103.	22.5	278
5	Laser-Activated Gene Silencing <i>via</i> Gold Nanoshellâ^'siRNA Conjugates. ACS Nano, 2009, 3, 2007-2015.	14.6	267
6	Chemically Patterned Microspheres for Controlled Nanoparticle Assembly in the Construction of SERS Hot Spots. Journal of the American Chemical Society, 2007, 129, 7760-7761.	13.7	213
7	Transtumoral targeting enabled by a novel neuropilin-binding peptide. Oncogene, 2012, 31, 3754-3763.	5.9	203
8	Rapid Identification by Surface-Enhanced Raman Spectroscopy of Cancer Cells at Low Concentrations Flowing in a Microfluidic Channel. ACS Nano, 2015, 9, 4328-4336.	14.6	177
9	Generalized Approach to SERS-Active Nanomaterials via Controlled Nanoparticle Linking, Polymer Encapsulation, and Small-Molecule Infusion. Journal of Physical Chemistry C, 2009, 113, 13622-13629.	3.1	160
10	An endocytosis pathway initiated through neuropilin-1 and regulated by nutrient availability. Nature Communications, 2014, 5, 4904.	12.8	156
11	Etchable plasmonic nanoparticle probes to image and quantify cellular internalization. Nature Materials, 2014, 13, 904-911.	27.5	156
12	Mapping Local pH in Live Cells Using Encapsulated Fluorescent SERS Nanotags. Small, 2010, 6, 618-622.	10.0	151
13	A peptide for targeted, systemic delivery of imaging and therapeutic compounds into acute brain injuries. Nature Communications, 2016, 7, 11980.	12.8	138
14	Detection of Sequence-Specific Protein-DNA Interactions via Surface Enhanced Resonance Raman Scattering. Journal of the American Chemical Society, 2007, 129, 14572-14573.	13.7	137
15	A Heterogeneous PNA-Based SERS Method for DNA Detection. Journal of the American Chemical Society, 2007, 129, 6086-6087.	13.7	134
16	NMR Analysis of Surfaces and Interfaces in 2-nm CdSe. Journal of the American Chemical Society, 2004, 126, 7063-7070.	13.7	116
17	Rapid, Solution-Based Characterization of Optimized SERS Nanoparticle Substrates. Journal of the American Chemical Society, 2009, 131, 162-169.	13.7	100
18	Tumor-Penetrating iRGD Peptide Inhibits Metastasis. Molecular Cancer Therapeutics, 2015, 14, 120-128.	4.1	99

#	Article	IF	CITATIONS
19	Single-Order, Subwavelength Resonant Nanograting as a Uniformly Hot Substrate for Surface-Enhanced Raman Spectroscopy. Nano Letters, 2010, 10, 1780-1786.	9.1	83
20	Porous Silicon Nanoparticle Delivery of Tandem Peptide Antiâ€Infectives for the Treatment of <i>Pseudomonas aeruginosa</i> Lung Infections. Advanced Materials, 2017, 29, 1701527.	21.0	82
21	Controlled Spacing of Cationic Gold Nanoparticles by Nanocrown RNA. Journal of the American Chemical Society, 2005, 127, 11886-11887.	13.7	78
22	New p32/gC1qR Ligands for Targeted Tumor Drug Delivery. ChemBioChem, 2016, 17, 570-575.	2.6	75
23	Composite Porous Silicon–Silver Nanoparticles as Theranostic Antibacterial Agents. ACS Applied Materials & Interfaces, 2016, 8, 30449-30457.	8.0	70
24	Neuropilin-1 and heparan sulfate proteoglycans cooperate in cellular uptake of nanoparticles functionalized by cationic cell-penetrating peptides. Science Advances, 2015, 1, e1500821.	10.3	68
25	Paclitaxel-Loaded Polymersomes for Enhanced Intraperitoneal Chemotherapy. Molecular Cancer Therapeutics, 2016, 15, 670-679.	4.1	68
26	Graphene biointerfaces for optical stimulation of cells. Science Advances, 2018, 4, eaat0351.	10.3	68
27	Tumorâ€Targeted Multimodal Optical Imaging with Versatile Cadmiumâ€Free Quantum Dots. Advanced Functional Materials, 2016, 26, 267-276.	14.9	65
28	A tumor-penetrating peptide enhances circulation-independent targeting of peritoneal carcinomatosis. Journal of Controlled Release, 2015, 212, 59-69.	9.9	62
29	Quantitative ratiometric discrimination between noncancerous and cancerous prostate cells based on neuropilin-1 overexpression. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16559-16564.	7.1	60
30	Modular Plasmonic Nanocarriers for Efficient and Targeted Delivery of Cancer-Therapeutic siRNA. Nano Letters, 2014, 14, 2046-2051.	9.1	60
31	Novel methods of enhanced retention in and rapid, targeted release from liposomes. Current Opinion in Colloid and Interface Science, 2011, 16, 203-214.	7.4	57
32	A free cysteine prolongs the half-life of a homing peptide and improves its tumor-penetrating activity. Journal of Controlled Release, 2014, 175, 48-53.	9.9	56
33	In vivo cation exchange in quantum dots for tumor-specific imaging. Nature Communications, 2017, 8, 343.	12.8	56
34	Application of a Proapoptotic Peptide to Intratumorally Spreading Cancer Therapy. Cancer Research, 2013, 73, 1352-1361.	0.9	55
35	Clotting Activity of Polyphosphateâ€Functionalized Silica Nanoparticles. Angewandte Chemie - International Edition, 2015, 54, 4018-4022.	13.8	55
36	Identification of a peptide recognizing cerebrovascular changes in mouse models of Alzheimer's disease. Nature Communications, 2017, 8, 1403.	12.8	54

#	Article	IF	CITATIONS
37	Specific and sensitive detection of nucleic acids and RNases using gold nanoparticle–RNA–fluorescent dye conjugates. Chemical Communications, 2007, , 4342.	4.1	53
38	Advances in superresolution optical fluctuation imaging (SOFI). Quarterly Reviews of Biophysics, 2013, 46, 210-221.	5.7	49
39	Biotags Based on Surface-Enhanced Raman Can Be as Bright as Fluorescence Tags. Nano Letters, 2015, 15, 6745-6750.	9.1	49
40	Urokinase-controlled tumor penetrating peptide. Journal of Controlled Release, 2016, 232, 188-195.	9.9	46
41	Gold Nanoparticle Decoration of DNA on Silicon. Langmuir, 2005, 21, 10699-10701.	3.5	45
42	Robust SERS Enhancement Factor Statistics Using Rotational Correlation Spectroscopy. Nano Letters, 2012, 12, 2912-2917.	9.1	44
43	Cell-Targeted Self-Assembled DNA Nanostructures. Journal of the American Chemical Society, 2009, 131, 14237-14239.	13.7	42
44	Light-activated RNA interference in human embryonic stem cells. Biomaterials, 2015, 63, 70-79.	11.4	38
45	Targeted Intracellular Delivery of Proteins with Spatial and Temporal Control. Molecular Pharmaceutics, 2015, 12, 600-609.	4.6	34
46	Quantity and accessibility for specific targeting of receptors in tumours. Scientific Reports, 2014, 4, 5232.	3.3	33
47	Targeted silver nanoparticles for ratiometric cell phenotyping. Nanoscale, 2016, 8, 9096-9101.	5.6	33
48	Quantitative multiplexed simulated-cell identification by SERS in microfluidic devices. Nanoscale, 2015, 7, 16834-16840.	5.6	32
49	Nanostructured Antagonist of Extrasynaptic NMDA Receptors. Nano Letters, 2016, 16, 5495-5502.	9.1	26
50	A feasible approach to all-electronic digital labeling and readout for cell identification. Lab on A Chip, 2007, 7, 469.	6.0	25
51	Enzyme-Directed Positioning of Nanoparticles on Large DNA Templates. Bioconjugate Chemistry, 2008, 19, 476-479.	3.6	21
52	Combined surface-enhanced Raman spectroscopy biotags and microfluidic platform for quantitative ratiometric discrimination between noncancerous and cancerous cells in flow. Journal of Nanophotonics, 2013, 7, 073092.	1.0	16
53	Modularized Gold Nanocarriers for TATâ€Mediated Delivery of siRNA. Small, 2017, 13, 1602473.	10.0	16
54	Ratiometric in vivo auditioning of targeted silver nanoparticles. Nanoscale, 2017, 9, 10094-10100.	5.6	11

#	Article	IF	CITATIONS
55	Ag-nanoparticle fractionation by low melting point agarose gel electrophoresis. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	10
56	Silver Nanocarriers Targeted with a CendR Peptide Potentiate the Cytotoxic Activity of an Anticancer Drug. Advanced Therapeutics, 2021, 4, 2000097.	3.2	9
57	Screening for canine transitional cell carcinoma (TCC) by SERS-based quantitative urine cytology. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 1279-1287.	3.3	8
58	Thermoswitchable Nanoparticles Based on Elastin-like Polypeptides. Macromolecules, 2015, 48, 5868-5877.	4.8	7
59	SERS Biotags (SBTs) for the Quantitative Ratiometric Discrimination between Noncancerous and Cancerous Prostate Cells. Materials Research Society Symposia Proceedings, 2012, 1468, 19.	0.1	2
60	Silicon Nanoparticles: Porous Silicon Nanoparticle Delivery of Tandem Peptide Antiâ€Infectives for the Treatment of <i>Pseudomonas aeruginosa</i> Lung Infections (Adv. Mater. 35/2017). Advanced Materials, 2017, 29, .	21.0	2
61	DDEL-19PENETRATION OF HOMING PEPTIDE-FUNCTIONALIZED NANOPARTICLES TO GLIOMA SPHEROIDS IN VITRO. Neuro-Oncology, 2015, 17, v77.3-v77.	1.2	1
62	Combined SERS biotags (SBTs) and microfluidic platform for the quantitative ratiometric discrimination between noncancerous and cancerous cells in flow. , 2012, , .		0
63	RNA Delivery: Modularized Gold Nanocarriers for TATâ€Mediated Delivery of siRNA (Small 8/2017). Small, 2017, 13, .	10.0	0
64	Comment on Conopeptide-Functionalized Nanoparticles Selectively Antagonize Extrasynaptic N-Methyl-d-Aspartate Receptors and Protect Hippocampal Neurons from Excitotoxicity In Vitro. ACS Nano, 2021, 15, 15402-15408.	14.6	0