Shaobo Ruan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5411008/publications.pdf Version: 2024-02-01

SHAORO RUAN

#	Article	IF	CITATIONS
1	Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment. Chinese Chemical Letters, 2023, 34, 107518.	4.8	124
2	Advanced Biomaterials for Cell‧pecific Modulation and Restore of Cancer Immunotherapy. Advanced Science, 2022, 9, e2200027.	5.6	26
3	Rethinking CRITID Procedure of Brain Targeting Drug Delivery: Circulation, Blood Brain Barrier Recognition, Intracellular Transport, Diseased Cell Targeting, Internalization, and Drug Release. Advanced Science, 2021, 8, 2004025.	5.6	96
4	Furin-instructed aggregated gold nanoparticles for re-educating tumor associated macrophages and overcoming breast cancer chemoresistance. Biomaterials, 2021, 275, 120891.	5.7	54
5	Aggregable Nanoparticles-Enabled Chemotherapy and Autophagy Inhibition Combined with Anti-PD-L1 Antibody for Improved Glioma Treatment. Nano Letters, 2019, 19, 8318-8332.	4.5	142
6	Ligand Size and Conformation Affect the Behavior of Nanoparticles Coated with in Vitro and in Vivo Protein Corona. ACS Applied Materials & Interfaces, 2018, 10, 9094-9103.	4.0	91
7	Enzyme-triggered size shrink and laser-enhanced NO release nanoparticles for deep tumor penetration and combination therapy. Biomaterials, 2018, 168, 64-75.	5.7	234
8	Coadministration of iRGD with Multistage Responsive Nanoparticles Enhanced Tumor Targeting and Penetration Abilities for Breast Cancer Therapy. ACS Applied Materials & Interfaces, 2018, 10, 22571-22579.	4.0	99
9	Acidâ€Responsive Transferrin Dissociation and GLUT Mediated Exocytosis for Increased Blood–Brain Barrier Transcytosis and Programmed Glioma Targeting Delivery. Advanced Functional Materials, 2018, 28, 1802227.	7.8	111
10	Ligand-Mediated and Enzyme-Directed Precise Targeting and Retention for the Enhanced Treatment of Glioblastoma. ACS Applied Materials & Interfaces, 2017, 9, 20348-20360.	4.0	85
11	Normalizing Tumor Vessels To Increase the Enzyme-Induced Retention and Targeting of Gold Nanoparticle for Breast Cancer Imaging and Treatment. Molecular Pharmaceutics, 2017, 14, 3489-3498.	2.3	66
12	Cabazitaxel and indocyanine green co-delivery tumor-targeting nanoparticle for improved antitumor efficacy and minimized drug toxicity. Journal of Drug Targeting, 2017, 25, 179-187.	2.1	12
13	A New Concept of Enhancing Immuno-Chemotherapeutic Effects Against B16F10 Tumor <i>via</i> Systemic Administration by Taking Advantages of the Limitation of EPR Effect. Theranostics, 2016, 6, 2141-2160.	4.6	33
14	Utilizing G2/M retention effect to enhance tumor accumulation of active targeting nanoparticles. Scientific Reports, 2016, 6, 27669.	1.6	15
15	Increased Gold Nanoparticle Retention in Brain Tumors by <i>in Situ</i> Enzyme-Induced Aggregation. ACS Nano, 2016, 10, 10086-10098.	7.3	229
16	A dual strategy to improve the penetration and treatment of breast cancer by combining shrinking nanoparticles with collagen depletion by losartan. Acta Biomaterialia, 2016, 31, 186-196.	4.1	95
17	Integrin-mediated active tumor targeting and tumor microenvironment response dendrimer-gelatin nanoparticles for drug delivery and tumor treatment. International Journal of Pharmaceutics, 2015, 496, 1057-1068.	2.6	70
18	A Novel Strategy through Combining iRGD Peptide with Tumor-Microenvironment-Responsive and Multistage Nanoparticles for Deep Tumor Penetration. ACS Applied Materials & Interfaces, 2015, 7, 27458-27466.	4.0	101

Shaobo Ruan

#	Article	IF	CITATIONS
19	Targeting delivery and deep penetration using multistage nanoparticles for triple-negative breast cancer. RSC Advances, 2015, 5, 64303-64317.	1.7	33
20	Glioma cell-targeting doxorubicin delivery and redox-responsive release using angiopep-2 decorated carbonaceous nanodots. RSC Advances, 2015, 5, 57045-57049.	1.7	12
21	Matrix metalloproteinase triggered size-shrinkable gelatin-gold fabricated nanoparticles for tumor microenvironment sensitive penetration and diagnosis of glioma. Nanoscale, 2015, 7, 9487-9496.	2.8	156
22	Non-invasive imaging of breast cancer using RGDyK functionalized fluorescent carbonaceous nanospheres. RSC Advances, 2015, 5, 25428-25436.	1.7	12
23	Matrix metalloproteinase-sensitive size-shrinkable nanoparticles for deep tumor penetration and pH triggered doxorubicin release. Biomaterials, 2015, 60, 100-110.	5.7	249
24	In vitro and in vivo toxicology of bare and PEGylated fluorescent carbonaceous nanodots in mice and zebrafish: the potential relationship with autophagy. RSC Advances, 2015, 5, 38547-38557.	1.7	16
25	High Tumor Penetration of Paclitaxel Loaded pH Sensitive Cleavable Liposomes by Depletion of Tumor Collagen I in Breast Cancer. ACS Applied Materials & Interfaces, 2015, 7, 9691-9701.	4.0	98
26	Self-Targeting Fluorescent Carbon Dots for Diagnosis of Brain Cancer Cells. ACS Nano, 2015, 9, 11455-11461.	7.3	439
27	Tumor microenvironment sensitive doxorubicin delivery and release to glioma using angiopep-2 decorated gold nanoparticles. Biomaterials, 2015, 37, 425-435.	5.7	284
28	Fluorescent Carbonaceous Nanodots for Noninvasive Glioma Imaging after Angiopep-2 Decoration. Bioconjugate Chemistry, 2014, 25, 2252-2259.	1.8	45
29	A simple one-step method to prepare fluorescent carbon dots and their potential application in non-invasive glioma imaging. Nanoscale, 2014, 6, 10040-10047.	2.8	92
30	Fluorescent carbonaceous nanospheres as biological probe for noninvasive brain imaging. Journal of Colloid and Interface Science, 2014, 436, 227-233.	5.0	16
31	A simple one-step method for preparation of fluorescent carbon nanospheres and the potential application in cell organelles imaging. Journal of Colloid and Interface Science, 2014, 422, 25-29.	5.0	53
32	PEGylated Fluorescent Carbon Nanoparticles for Noninvasive Heart Imaging. Bioconjugate Chemistry, 2014, 25, 1061-1068.	1.8	43
33	Preparation and biological evaluation of photoluminescent carbonaceous nanospheres. Journal of Colloid and Interface Science, 2014, 429, 77-82.	5.0	17