List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5410919/publications.pdf Version: 2024-02-01

LUSSI MEDILUOTO

#	Article	IF	CITATIONS
1	Assessment of Common Cyanotoxins in Cyanobacteria of Biological Loess Crusts. Toxins, 2022, 14, 215.	3.4	4
2	Challenges of using blooms of Microcystis spp. in animal feeds: A comprehensive review of nutritional, toxicological and microbial health evaluation. Science of the Total Environment, 2021, 764, 142319.	8.0	97
3	Does the Kis-Balaton Water Protection System (KBWPS) Effectively Safeguard Lake Balaton from Toxic Cyanobacterial Blooms?. Microorganisms, 2021, 9, 960.	3.6	4
4	Cyanobacteria, cyanotoxins, and their histopathological effects on fish tissues in Fehérvárcsurgó reservoir, Hungary. Environmental Monitoring and Assessment, 2021, 193, 554.	2.7	6
5	Cyanobacterial Potential for Restoration of Loess Surfaces through Artificially Induced Biocrusts. Applied Sciences (Switzerland), 2021, 11, 66.	2.5	8
6	Protected Freshwater Ecosystem with Incessant Cyanobacterial Blooming Awaiting a Resolution. Water (Switzerland), 2020, 12, 129.	2.7	8
7	Potential of cyanobacterial secondary metabolites as biomarkers for paleoclimate reconstruction. Catena, 2020, 185, 104283.	5.0	2
8	In Vitro Toxicological Screening of Stable and Senescing Cultures of Aphanizomenon, Planktothrix, and Raphidiopsis. Toxins, 2020, 12, 400.	3.4	6
9	Elimination of cyanobacteria and microcystins in irrigation water—effects of hydrogen peroxide treatment. Environmental Science and Pollution Research, 2020, 27, 8638-8652.	5.3	30
10	Global geographical and historical overview of cyanotoxin distribution and cyanobacterial poisonings. Archives of Toxicology, 2019, 93, 2429-2481.	4.2	230
11	Cyanobacteria and loess—an underestimated interaction. Plant and Soil, 2019, 439, 293-308.	3.7	16
12	The Effect of a Combined Hydrogen Peroxide-MIrA Treatment on the Phytoplankton Community and Microcystin Concentrations in a Mesocosm Experiment in Lake LudoÅ;. Toxins, 2019, 11, 725.	3.4	15
13	Cyanobacterial effects in Lake LudoÅ;, Serbia - Is preservation of a degraded aquatic ecosystem justified?. Science of the Total Environment, 2018, 635, 1047-1062.	8.0	17
14	The structure and toxicity of winter cyanobacterial bloom in a eutrophic lake of the temperate zone. Ecotoxicology, 2018, 27, 752-760.	2.4	37
15	Screening of cyanobacterial cultures originating from different environments for cyanotoxicity and cyanotoxins. Toxicon, 2018, 154, 1-6.	1.6	14
16	Effects of <i>Daphnia</i> exudates and sodium octyl sulphates on filament morphology and cell wall thickness of <i>Aphanizomenon gracile</i> (Nostocales), <i>Cylindrospermopsis raciborskii</i> (Nostocales) and <i>Planktothrix agardhii</i> (Oscillatoriales). European Journal of Phycology, 2018, 53, 280-289.	2.0	16
17	Cyanobacteria and microcystins in Koka reservoir (Ethiopia). Environmental Science and Pollution Research, 2018, 25, 26861-26873.	5.3	30
18	Cyanobacterial diversity and toxicity of biocrusts from the Caspian Lowland loess deposits, North Iran. Quaternary International, 2017, 429, 74-85.	1.5	24

#	Article	IF	CITATIONS
19	Microcystin accumulation and potential effects on antioxidant capacity of leaves and fruits of <i>Capsicum annuum</i> . Journal of Toxicology and Environmental Health - Part A: Current Issues, 2017, 80, 145-154.	2.3	49
20	The Italian System for Cyanobacterial Risk Management in Drinking Water Chains. , 2017, , 100-106.		0
21	Selection of Analytical Methodology for Cyanotoxin Analysis. , 2017, , 309-312.		0
22	Toxicology of microcystins with reference to cases of human intoxications and epidemiological investigations of exposures to cyanobacteria and cyanotoxins. Archives of Toxicology, 2017, 91, 621-650.	4.2	180
23	The biodegradation of microcystins in temperate freshwater bodies with previous cyanobacterial history. Ecotoxicology and Environmental Safety, 2017, 145, 420-430.	6.0	41
24	Reply to the Comment on "Melanisation of Aspergillus terreus—Is Butyrolactone I Involved in the Regulation of Both DOPA and DHN Types of Pigments in Submerged Culture? Microorganisms 2017, 5, 22― Microorganisms, 2017, 5, 36.	3.6	0
25	Transcriptomic Complexity of Aspergillus terreus Velvet Gene Family under the Influence of Butyrolactone I. Microorganisms, 2017, 5, 12.	3.6	30
26	First report of cyanobacterial paralytic shellfish toxin biosynthesis genes and paralytic shellfish toxin production in Polish freshwater lakes. Advances in Oceanography and Limnology, 2017, 8, .	0.6	13
27	Melanisation of Aspergillus terreus—Is Butyrolactone I Involved in the Regulation of Both DOPA and DHN Types of Pigments in Submerged Culture?. Microorganisms, 2017, 5, 22.	3.6	19
28	Toxic cyanobacteria and cyanotoxins in European waters – recent progress achieved through the CYANOCOST Action and challenges for further research. Advances in Oceanography and Limnology, 2017, 8, .	0.6	64
29	Foreword to the Themed Issue "Cyanobacteria― Advances in Oceanography and Limnology, 2017, 8, .	0.6	Ο
30	Non-competitive ELISA with broad specificity for microcystins and nodularins. Advances in Oceanography and Limnology, 2017, 8, .	0.6	11
31	Assessment of cyanoprokaryote blooms and of cyanotoxins in Bulgaria in a 15-years period (2000-2015). Advances in Oceanography and Limnology, 2017, 8, .	0.6	18
32	Characterization of Enzymatic Activity of MlrB and MlrC Proteins Involved in Bacterial Degradation of Cyanotoxins Microcystins. Toxins, 2016, 8, 76.	3.4	36
33	Morphologic, Phylogenetic and Chemical Characterization of a Brackish Colonial Picocyanobacterium (Coelosphaeriaceae) with Bioactive Properties. Toxins, 2016, 8, 108.	3.4	11
34	Structures and Activity of New Anabaenopeptins Produced by Baltic Sea Cyanobacteria. Marine Drugs, 2016, 14, 8.	4.6	65
35	A Collaborative Evaluation of LC-MS/MS Based Methods for BMAA Analysis: Soluble Bound BMAA Found to Be an Important Fraction. Marine Drugs, 2016, 14, 45.	4.6	47
36	Massive fish mortality and Cylindrospermopsis raciborskii bloom in Aleksandrovac Lake. Ecotoxicology, 2016, 25, 1353-1363.	2.4	30

JUSSI MERILUOTO

#	Article	IF	CITATIONS
37	Cyanobacteria and cyanotoxins in fishponds and their effects on fish tissue. Harmful Algae, 2016, 55, 66-76.	4.8	80
38	Broad-Spectrum Noncompetitive Immunocomplex Immunoassay for Cyanobacterial Peptide Hepatotoxins (Microcystins and Nodularins). Analytical Chemistry, 2016, 88, 10080-10087.	6.5	37
39	Oxygen produced by cyanobacteria in simulated Archaean conditions partly oxidizes ferrous iron but mostly escapes—conclusions about early evolution. Photosynthesis Research, 2016, 130, 103-111.	2.9	8
40	Quantity of the dinoflagellate sxtA4 gene and cell density correlates with paralytic shellfish toxin production in Alexandrium ostenfeldii blooms. Harmful Algae, 2016, 52, 1-10.	4.8	25
41	Loess and life out of Earth?. Quaternary International, 2016, 399, 208-217.	1.5	6
42	Detection of cyanobacterial sxt genes and paralytic shellfish toxins in freshwater lakes and brackish waters on Ã…land Islands, Finland. Harmful Algae, 2015, 46, 1-10.	4.8	30
43	Toxicopathology Induced by Microcystins and Nodularin: AÂHistopathological Review. Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews, 2015, 33, 125-167.	2.9	30
44	Bioaccumulation of hepatotoxins – A considerable risk in the Latvian environment. Environmental Pollution, 2015, 196, 313-320.	7.5	19
45	Butyrolactone I Quantification from Lovastatin Producing Aspergillus terreus Using Tandem Mass Spectrometry—Evidence of Signalling Functions. Microorganisms, 2014, 2, 111-127.	3.6	18
46	Epidemiology of Cancers in Serbia and Possible Connection with Cyanobacterial Blooms. Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews, 2014, 32, 319-337.	2.9	44
47	First Report of Cylindrospermopsin Production by Two Cyanobacteria (Dolichospermum mendotae and) Tj ETQq1	1 _{.0} 7843	14ggBT /O∨
48	Rapid quantification of mcyB copy numbers on dry chemistry PCR chips and predictability of microcystin concentrations in freshwater environments. Harmful Algae, 2014, 39, 280-286.	4.8	13
49	Microbial Degradation of Microcystins. Chemical Research in Toxicology, 2013, 26, 841-852.	3.3	114
50	Aphanizomenon gracile (Nostocales), a cylindrospermopsin-producing cyanobacterium in Polish lakes. Environmental Science and Pollution Research, 2013, 20, 5243-5264.	5.3	70
51	Quantitative PCR detection and improved sample preparation of microcystin-producing Anabaena, Microcystis and Planktothrix. Ecotoxicology and Environmental Safety, 2013, 87, 49-56.	6.0	29
52	Diversity of Peptides Produced by Nodularia spumigena from Various Geographical Regions. Marine Drugs, 2013, 11, 1-19.	4.6	58
53	Comparative Cellular Toxicity of Hydrophilic and Hydrophobic Microcystins on Caco-2 Cells. Toxins, 2012, 4, 1008-1023.	3.4	80
54	Glycosylphosphatidylinositol (GPI)-anchoring of mamba toxins enables cell-restricted receptor silencing. Biochemical and Biophysical Research Communications, 2012, 417, 93-97.	2.1	1

#	Article	IF	CITATIONS
55	Removal of Cholera Toxin from Aqueous Solution by Probiotic Bacteria. Pharmaceuticals, 2012, 5, 665-673.	3.8	12
56	Characterization of microcystin-LR removal process in the presence of probiotic bacteria. Toxicon, 2012, 59, 171-181.	1.6	40
57	Heterologous expression and characterisation of microcystinase. Toxicon, 2012, 59, 578-586.	1.6	51
58	Cyanotoxin production in seven Ethiopian Rift Valley Lakes. Inland Waters, 2011, 1, 81-91.	2.2	44
59	Adrenoceptor activity of muscarinic toxins identified from mamba venoms. British Journal of Pharmacology, 2011, 164, 538-550.	5.4	20
60	Detection of free and covalently bound microcystins in animal tissues by liquid chromatography–tandem mass spectrometry. Environmental Pollution, 2010, 158, 948-952.	7.5	74
61	Accumulation of free and covalently bound microcystins in tissues of Lymnaea stagnalis (Gastropoda) following toxic cyanobacteria or dissolved microcystin-LR exposure. Environmental Pollution, 2010, 158, 674-680.	7.5	55
62	LC–ESI-Q-TOF-MS for faster and accurate determination of microcystins and nodularins in serum. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2010, 878, 2433-2441.	2.3	10
63	Interaction of probiotics and pathogens—benefits to human health?. Current Opinion in Biotechnology, 2010, 21, 157-167.	6.6	126
64	Fast separation of microcystins and nodularins on narrow-bore reversed-phase columns coupled to a conventional HPLC system. Toxicon, 2010, 55, 954-964.	1.6	42
65	Rapid LC–MS detection of cyanobacterial hepatotoxins microcystins and nodularins—Comparison of columns. Analytica Chimica Acta, 2009, 653, 234-241.	5.4	50
66	Separation of microcystins and nodularins by ultra performance liquid chromatography. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2009, 877, 3822-3830.	2.3	22
67	Accumulation and Effects of Nodularin from a Single and Repeated Oral Doses of Cyanobacterium Nodularia spumigena on Flounder (Platichthys flesus L.). Archives of Environmental Contamination and Toxicology, 2009, 57, 164-173.	4.1	25
68	Production and sedimentation of peptide toxins nodularin-R and microcystin-LR in the northern Baltic Sea. Environmental Pollution, 2009, 157, 1301-1309.	7.5	39
69	First report of the cyanobacterial toxin cylindrospermopsin in the shallow, eutrophic lakes of western Poland. Chemosphere, 2009, 74, 669-675.	8.2	66
70	Combining strains of lactic acid bacteria may reduce their toxin and heavy metal removal efficiency from aqueous solution. Letters in Applied Microbiology, 2008, 46, 160-165.	2.2	135
71	Adhesion and aggregation properties of probiotic and pathogen strains. European Food Research and Technology, 2008, 226, 1065-1073.	3.3	400
72	Effect of Glucose in Removal of Microcystin-LR by Viable Commercial Probiotic Strains and Strains Isolated from Dadih Fermented Milk. Journal of Agricultural and Food Chemistry, 2008, 56, 3714-3720.	5.2	26

#	Article	IF	CITATIONS
73	Nucleotide excision repair impairment by nodularin in CHO cell lines due to ERCC1/XPF inactivation. Toxicology Letters, 2008, 179, 101-107.	0.8	17
74	Nodularin in feathers and liver of eiders (Somateria mollissima) caught from the western Gulf of Finland in June–September 2005. Harmful Algae, 2008, 7, 99-105.	4.8	22
75	Specific strains of probiotic bacteria are efficient in removal of several different cyanobacterial toxins from solution. Toxicon, 2008, 52, 214-220.	1.6	46
76	Oxidation of MC-LR and -RR with chlorine and potassium permanganate: Toxicity of the reaction products. Water Research, 2008, 42, 1744-1752.	11.3	77
77	Effect of glucose and incubation temperature on metabolically active Lactobacillus plantarum from dadih in removing microcystin-LR. Food and Chemical Toxicology, 2008, 46, 502-507.	3.6	36
78	Oxidation of microcystin-LR with chlorine and permanganate during drinking water treatment. Journal of Water Supply: Research and Technology - AQUA, 2008, 57, 371-380.	1.4	26
79	Cyanobacterial hepatotoxins, microcystins and nodularins, in fresh and brackish waters of the Pomeranian Province, northern Poland. Oceanological and Hydrobiological Studies, 2008, 37, 3-21.	0.7	27
80	Exposure of mallards (Anas platyrhynchos) to the hepatotoxic cyanobacteriumNodularia spumigena. Toxicological and Environmental Chemistry, 2008, 90, 437-444.	1.2	1
81	Cyanotoxins: sampling, sample processing and toxin uptake. Advances in Experimental Medicine and Biology, 2008, 619, 483-499.	1.6	45
82	Oxidation of microcystins by permanganate: Reaction kinetics and implications for water treatment. Water Research, 2007, 41, 102-110.	11.3	164
83	Effects of microcystins on broccoli and mustard, and analysis of accumulated toxin by liquid chromatography–mass spectrometry. Toxicon, 2007, 49, 865-874.	1.6	80
84	Transfer of nodularin to three-spined stickleback (Gasterosteus aculeatus L.), herring (Clupea) Tj ETQq0 0 0 rgBT Environmental Safety, 2007, 66, 421-425.	/Overlock 6.0	10 Tf 50 307 35
85	Accumulation and depuration of cyanobacterial toxin nodularin and biomarker responses in the mussel Mytilus edulis. Chemosphere, 2007, 68, 1210-1217.	8.2	61
86	In vitro analysis of probiotic strain combinations to inhibit pathogen adhesion to human intestinal mucus. Food Research International, 2007, 40, 629-636.	6.2	96
87	Measurement of aggregation properties between probiotics and pathogens: In vitro evaluation of different methods. Journal of Microbiological Methods, 2007, 71, 71-74.	1.6	108
88	Development of New Probiotics by Strain Combinations: Is It Possible to Improve the Adhesion to Intestinal Mucus?. Journal of Dairy Science, 2007, 90, 2710-2716.	3.4	76
89	Selective Oxidation of Key Functional Groups in Cyanotoxins during Drinking Water Ozonation. Environmental Science & Technology, 2007, 41, 4397-4404.	10.0	152
90	Potential Probiotic Characteristics of Lactobacillus and Enterococcus Strains Isolated from Traditional Dadih Fermented Milk against Pathogen Intestinal Colonization. Journal of Food Protection, 2007, 70, 700-705.	1.7	50

JUSSI MERILUOTO

#	Article	IF	CITATIONS
91	Indigenous Dadih Lactic Acid Bacteria: Cell-Surface Properties and Interactions with Pathogens. Journal of Food Science, 2007, 72, M89-M93.	3.1	93
92	Role of commercial probiotic strains against human pathogen adhesion to intestinal mucus. Letters in Applied Microbiology, 2007, 45, 454-460.	2.2	245
93	Removal of microcystin-LR by strains of metabolically active probiotic bacteria. FEMS Microbiology Letters, 2007, 270, 27-33.	1.8	56
94	Nodularin-induced genotoxicity following oxidative DNA damage and aneuploidy in HepG2 cells. Toxicology Letters, 2006, 164, 239-248.	0.8	34
95	Legal and security requirements for the air transportation of cyanotoxins and toxigenic cyanobacterial cells for legitimate research and analytical purposes. Toxicology Letters, 2006, 163, 85-90.	0.8	12
96	Oxidation of the Cyanobacterial Hepatotoxin Microcystin-LR by Chlorine Dioxide:Â Influence of Natural Organic Matter. Environmental Science & Technology, 2006, 40, 1504-1510.	10.0	56
97	The degradation of the cyanobacterial hepatotoxin nodularin (NOD) by UV radiation. Chemosphere, 2006, 65, 1388-1395.	8.2	24
98	Production of antibodies against microcystin-RR for the assessment of purified microcystins and cyanobacterial environmental samples. Toxicon, 2006, 48, 295-306.	1.6	33
99	Characterization of nodularin variants inNodularia spumigena from the Baltic Sea using liquid chromatography/mass spectrometry/mass spectrometry. Rapid Communications in Mass Spectrometry, 2006, 20, 2023-2032.	1.5	63
100	First observation of cylindrospermopsin inAnabaena lapponica isolated from the boreal environment (Finland). Environmental Toxicology, 2006, 21, 552-560.	4.0	153
101	ANALYSIS OF NODULARIN-R IN EIDER (SOMATERIA MOLLISSIMA), ROACH (RUTILUS RUTILUS L.), AND FLOUNDER (PLATICHTHYS FLESUS L.) LIVER AND MUSCLE SAMPLES FROM THE WESTERN GULF OF FINLAND, NORTHERN BALTIC SEA. Environmental Toxicology and Chemistry, 2006, 25, 2834.	4.3	35
102	Distribution of Hepatotoxic Cyanobacterial Blooms in Belgium and Luxembourg. Hydrobiologia, 2005, 551, 99-117.	2.0	71
103	Trophic transfer of cyanobacterial toxins from zooplankton to planktivores: Consequences for pike larvae and mysid shrimps. Environmental Toxicology, 2005, 20, 354-362.	4.0	46
104	Quantitative LC-ESI-MS analyses of microcystins and nodularin-R in animal tissue—Matrix effects and method validation. Environmental Toxicology, 2005, 20, 381-389.	4.0	61
105	Heterogeneity of nodularin bioaccumulation in northern Baltic Sea flounders in 2002. Chemosphere, 2005, 59, 1091-1097.	8.2	32
106	Kinetics of reactions between chlorine and the cyanobacterial toxins microcystins. Water Research, 2005, 39, 1628-1638.	11.3	144
107	Elimination of microcystins by water treatment processes—examples from Sulejow Reservoir, Poland. Water Research, 2005, 39, 2394-2406.	11.3	92
108	Removal of the cyanobacterial toxin microcystin-LR by human probiotics. Toxicon, 2005, 46, 111-114.	1.6	41

#	Article	IF	CITATIONS
109	First observation of microcystin-LR in pelagic cyanobacterial blooms in the northern Baltic Sea. Harmful Algae, 2005, 4, 163-166.	4.8	49
110	EIDERS (SOMATERIA MOLLISSIMA) OBTAIN NODULARIN, A CYANOBACTERIAL HEPATOTOXIN, IN BALTIC SEA FOOD WEB. Environmental Toxicology and Chemistry, 2004, 23, 1256.	4.3	37
111	Comparison of product ion spectra obtained by liquid chromatography/triple-quadrupole mass spectrometry for library search. Rapid Communications in Mass Spectrometry, 2004, 18, 1039-1046.	1.5	61
112	Oxidation of the Cyanobacterial Hepatotoxin Microcystin-LR by Chlorine Dioxide:Â Reaction Kinetics, Characterization, and Toxicity of Reaction Products. Environmental Science & Technology, 2004, 38, 6025-6031.	10.0	89
113	Characterization and Diversity of Cyano- bacterial Hepatotoxins (Microcystins) in Blooms from Polish Freshwaters Identified by Liquid Chromatography-Electrospray Ionisation Mass Spectrometry. Chromatographia, 2004, 59, .	1.3	44
114	Assimilation and depuration of microcystin–LR by the zebra mussel, Dreissena polymorpha. Aquatic Toxicology, 2004, 69, 385-396.	4.0	106
115	Microcystin occurrence in lakes in Ãland, SW Finland. Hydrobiologia, 2003, 505, 129-138.	2.0	21
116	Identification of ATP-synthase as a novel intracellular target for microcystin-LR. Chemico-Biological Interactions, 2003, 142, 223-237.	4.0	94
117	Screening for cyanobacterial hepatotoxins, microcystins and nodularin in environmental water samples by reversed-phase liquid chromatography–electrospray ionisation mass spectrometry. Journal of Chromatography A, 2003, 1020, 105-119.	3.7	194
118	Mass spectrometric detection of nodularin and desmethylnodularin in mussels and flounders. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2003, 784, 243-253.	2.3	53
119	Uptake and accumulation of dissolved, radiolabeled nodularin in Baltic Sea zooplankton. Environmental Toxicology, 2003, 18, 52-60.	4.0	42
120	Mass spectrometric detection and quantification of nodularin-R in flounder livers. Environmental Toxicology, 2003, 18, 284-288.	4.0	18
121	Synthesis and organotropism of 3H-dihydro derivatives of the cyanobacterial peptide hepatotoxin nodularin. Toxicon, 2003, 41, 153-162.	1.6	12
122	Interaction between microcystins of different hydrophobicities and lipid monolayers. Toxicon, 2003, 41, 349-355.	1.6	57
123	Screening for cyanobacterial hepatotoxins in herring and salmon from the Baltic Sea. Aquatic Ecosystem Health and Management, 2002, 5, 451-456.	0.6	27
124	Chromatographic and spectral behaviour and detection of hepatotoxic nodularin in fish, clam, mussel and mouse tissues using HPLC analysis. Chromatographia, 2002, 55, 157-162.	1.3	19
125	Effects of dissolved cyanobacterial toxins on the survival and egg hatching of estuarine calanoid copepods. Marine Biology, 2002, 140, 577-583.	1.5	56
126	Rapid separation of microcystins and nodularin using a monolithic silica C18 column. Journal of Chromatography A, 2002, 947, 237-245.	3.7	57

#	Article	IF	CITATIONS
127	Production and specificity of mono and polyclonal antibodies against microcystins conjugated through N-methyldehydroalanine. Toxicon, 2001, 39, 477-483.	1.6	27
128	A time-resolved fluoroimmunometric assay for the detection of microcystins, cyanobacterial peptide hepatotoxins. Toxicon, 2001, 39, 831-836.	1.6	24
129	The toxicities of a polyunsaturated fatty acid and a microcystin toDaphnia magna. Environmental Toxicology, 2001, 16, 444-448.	4.0	34
130	Detection of nodularin in flounders and cod from the Baltic Sea. Environmental Toxicology, 2001, 16, 121-126.	4.0	73
131	Time-dependent accumulation of cyanobacterial hepatotoxins in flounders (Platichthys flesus) and Mussels (Mytilus edulis) from the Northern Baltic Sea. Environmental Toxicology, 2001, 16, 330-336.	4.0	98
132	Pink snapper (Pagrus auratus) as a bioindicator of aquatic environmental health in Western Australia. Environmental Toxicology, 2001, 16, 449-454.	4.0	7
133	High-performance liquid chromatographic separation of microcystins and nodularin, cyanobacterial peptide toxins, on C18 and amide C16 sorbents. Journal of Chromatography A, 2001, 909, 225-236.	3.7	60
134	Effects of ship traffic on archipelago waters off the Långnäharbour in Åland, SW Finland. Hydrobiologia, 2001, 444, 217-225.	2.0	21
135	Chapter 11B Toxins of freshwater cyanobacteria (blue-green algae). Handbook of Analytical Separations, 2000, , 359-390.	0.8	2
136	The first observation of okadaic acid in flounder in the Baltic Sea. Sarsia, 2000, 85, 471-475.	0.5	17
137	Isolation and Detection of Microcystins and Nodularins, Cyanobacterial Peptide Hepatotoxins. , 2000, 145, 65-87.		19
138	Toxic algae and fish mortality in a brackish-water lake in Ã…land, SW Finland. Hydrobiologia, 1999, 397, 109-120.	2.0	75
139	Electrochemical detection of microcystins, cyanobacterial peptide hepatotoxins, following high-performance liquid chromatography. Journal of Chromatography A, 1998, 810, 226-230.	3.7	45
140	Microcystin uptake inhibits growth and protein phosphatase activity in mustard (Sinapis alba L.) seedlings. Toxicon, 1998, 36, 1921-1926.	1.6	82
141	Chromatography of microcystins. Analytica Chimica Acta, 1997, 352, 277-298.	5.4	159
142	Conformational Studies of Microcystin-LR Using NMR Spectroscopy and Molecular Dynamics Calculationsâ€,‡. Biochemistry, 1996, 35, 3197-3205.	2.5	48
143	Choosing analytical strategy for microcystins. Phycologia, 1996, 35, 125-132.	1.4	14
144	Ecological effects of hepatotoxic cyanobacteria. Environmental Toxicology and Water Quality, 1992, 7, 87-93.	0.5	12

#	Article	IF	CITATIONS
145	Recurrent Depth Maxima of the Hepatotoxic Cyanobacterium Oscillatoria agardhii. Canadian Journal of Fisheries and Aquatic Sciences, 1991, 48, 1629-1634.	1.4	46
146	Computer modelling of the 3-dimensional structures of the cyanobacterial hepatotoxins microcystin-LR and nodularin. Toxicon, 1991, 29, 901-906.	1.6	37
147	Retention mechanisms and selectivity in internal-surface reversed-phase liquid chromatography. Studies with cyanobacterial peptide toxins. Chromatographia, 1990, 30, 301-308.	1.3	17
148	Internal surface reversed-phase high-performance liquid chromatographic separation of the cyanobacterial peptide toxins microcystin-LA, -LR, -YR, -RR and nodularin. Journal of Chromatography A, 1990, 509, 390-395.	3.7	54
149	Synthesis, organotropism and hepatocellular uptake of two tritium-labeled epimers of dihydromicrocystin-LR, a cyanobacterial peptide toxin analog. Toxicon, 1990, 28, 1439-1446.	1.6	78
150	Structure of a hepatotoxic pentapeptide from the cyanobacterium Nodularia spumigena. Toxicon, 1990, 28, 535-540.	1.6	37
151	Hepatocellular uptake of 3H-dihydromicrocystin-LR, a cyclic peptide toxin. Biochimica Et Biophysica Acta - Biomembranes, 1990, 1025, 60-66.	2.6	183
152	Hepatocyte deformation induced by cyanobacterial toxins reflects inhibition of protein phosphatases. Biochemical and Biophysical Research Communications, 1990, 173, 1347-1353.	2.1	331
153	Accumulation of a peptide toxin from the cyanobacterium Oscillatoria agardhii in the freshwater mussel Anadonta cygnea. Hydrobiologia, 1989, 183, 211-216.	2.0	112
154	Toxic cyanobacteria and water quality problems—Examples from a eutrophic lake on Åland, South West Finland. Water Research, 1989, 23, 481-486.	11.3	91
155	Structure and toxicity of a peptide hepatotoxin from the cyanobacterium Oscillatoria agardhii. Toxicon, 1989, 27, 1021-1034.	1.6	149
156	Rapid microfilament reorganization induced in isolated rat hepatocytes by microcystin-LR, a cyclic peptide toxin. Experimental Cell Research, 1989, 185, 86-100.	2.6	139
157	Cellular effects of cyanobacterial peptide toxins. Toxicity Assessment, 1988, 3, 511-518.	0.6	13
158	Rapid analysis of peptide toxins in cyanobacteria. Journal of Chromatography A, 1988, 438, 93-99.	3.7	100
159	A comparison of toxins isolated from the cyanobacteria Oscillatoria agardhii and Microcystis aeruginosa. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1988, 89, 207-210.	0.2	13
160	Preliminary characterization of a toxin isolated from the cyanobacterium Nodularia spumigena. Toxicon, 1988, 26, 161-166.	1.6	95
161	Plankton hitch-hikers on naturalists' instruments as silent intruders of aquatic ecosystems: current risks and possible prevention. NeoBiota, 0, 73, 193-219.	1.0	5