
Martin K Lotz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5410709/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Collagen fibrous scaffolds for sustained delivery of growth factors for meniscal tissue engineering. Nanomedicine, 2022, 17, 77-93.	3.3	8
2	Krüppel-like factor-4 and Krüppel-like factor-2 are important regulators of joint tissue cells and protect against tissue destruction and inflammation in osteoarthritis. Annals of the Rheumatic Diseases, 2022, 81, 1179-1188.	0.9	18
3	The mechanosensitive ion channel PIEZO1 is expressed in tendons and regulates physical performance. Science Translational Medicine, 2022, 14, .	12.4	21
4	The TAT Protein Transduction Domain as an Intra-Articular Drug Delivery Technology. Cartilage, 2021, 13, 1637S-1645S.	2.7	4
5	G protein-coupled receptor kinase 5 deletion suppresses synovial inflammation in a murine model of collagen antibody-induced arthritis. Scientific Reports, 2021, 11, 10481.	3.3	2
6	Osteoarthritis Research Society International (OARSI): Past, present and future. Osteoarthritis and Cartilage Open, 2021, 3, 100146.	2.0	1
7	Both microRNA-455-5p and -3p repress hypoxia-inducible factor-2α expression and coordinately regulate cartilage homeostasis. Nature Communications, 2021, 12, 4148.	12.8	38
8	MicroRNA Expression Profiling, Target Identification, and Validation in. Methods in Molecular Biology, 2021, 2245, 151-166.	0.9	1
9	Bioactive proteins delivery through core-shell nanofibers for meniscal tissue regeneration. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 23, 102090.	3.3	33
10	<scp>GRK</scp> 5 Inhibition Attenuates Cartilage Degradation via Decreased <scp>NF</scp> â€₽B Signaling. Arthritis and Rheumatology, 2020, 72, 620-631.	5.6	21
11	Mohawk is a transcription factor that promotes meniscus cell phenotype and tissue repair and reduces osteoarthritis severity. Science Translational Medicine, 2020, 12, .	12.4	22
12	In vitro Neo-Genesis of Tendon/Ligament-Like Tissue by Combination of Mohawk and a Three-Dimensional Cyclic Mechanical Stretch Culture System. Frontiers in Cell and Developmental Biology, 2020, 8, 307.	3.7	7
13	Histological scoring system for subchondral bone changes in murine models of joint aging and osteoarthritis. Scientific Reports, 2020, 10, 10077.	3.3	34
14	FOXO1 and FOXO3 transcription factors have unique functions in meniscus development and homeostasis during aging and osteoarthritis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3135-3143.	7.1	51
15	Genomeâ€Wide Occupancy Profiling Reveals Critical Roles of FoxO1 in Regulating Extracellular Matrix and Circadian Rhythm Genes in Human Chondrocytes. Arthritis and Rheumatology, 2020, 72, 1514-1523.	5.6	17
16	Fibrates as drugs with senolytic and autophagic activity for osteoarthritis therapy. EBioMedicine, 2019, 45, 588-605.	6.1	86
17	FOXO1 transcription factor regulates chondrogenic differentiation through transforming growth factor î²1 signaling. Journal of Biological Chemistry, 2019, 294, 17555-17569.	3.4	48
18	Wwp2 maintains cartilage homeostasis through regulation of Adamts5. Nature Communications, 2019, 10, 2429.	12.8	78

#	Article	IF	CITATIONS
19	Core–Shell Nanofibrous Scaffolds for Repair of Meniscus Tears. Tissue Engineering - Part A, 2019, 25, 1577-1590.	3.1	19
20	TAFI deficiency causes maladaptive vascular remodeling after hemophilic joint bleeding. JCI Insight, 2019, 4, .	5.0	8
21	Role of heparan sulfate 6-0 endosulfatases in intervertebral disc homeostasis. Histology and Histopathology, 2019, 34, 1051-1060.	0.7	2
22	Impaired Proteasomal Function in Human Osteoarthritic Chondrocytes Can Contribute to Decreased Levels of <scp>SOX</scp> 9 and Aggrecan. Arthritis and Rheumatology, 2018, 70, 1030-1041.	5.6	14
23	Carnosic acid attenuates cartilage degeneration through induction of heme oxygenase-1 in human articular chondrocytes. European Journal of Pharmacology, 2018, 830, 1-8.	3.5	15
24	FoxO transcription factors modulate autophagy and proteoglycan 4 in cartilage homeostasis and osteoarthritis. Science Translational Medicine, 2018, 10, .	12.4	189
25	Gene expression profiles of the meniscus avascular phenotype: A guide for meniscus tissue engineering. Journal of Orthopaedic Research, 2018, 36, 1947-1958.	2.3	19
26	Extracellular vesicles in cartilage homeostasis and osteoarthritis. Current Opinion in Rheumatology, 2018, 30, 129-135.	4.3	54
27	HMGB proteins and arthritis. Human Cell, 2018, 31, 1-9.	2.7	75
28	Modulation of matrix metabolism by ATP-citrate lyase in articular chondrocytes. Journal of Biological Chemistry, 2018, 293, 12259-12270.	3.4	17
29	FOXO are required for intervertebral disk homeostasis during aging and their deficiency promotes disk degeneration. Aging Cell, 2018, 17, e12800.	6.7	59
30	HMGB2 is a novel adipogenic factor that regulates ectopic fat infiltration in skeletal muscles. Scientific Reports, 2018, 8, 9601.	3.3	17
31	Molecular mechanisms of autophagic memory in pathogenic T cells in human arthritis. Journal of Autoimmunity, 2018, 94, 90-98.	6.5	11
32	Identification of transcription factors responsible for dysregulated networks in human osteoarthritis cartilage by global gene expression analysis. Osteoarthritis and Cartilage, 2018, 26, 1531-1538.	1.3	143
33	Platelet-derived growth factor-coated decellularized meniscus scaffold for integrative healing of meniscus tears. Acta Biomaterialia, 2018, 76, 126-134.	8.3	42
34	TWIST1 induces MMP3 expression through up-regulating DNA hydroxymethylation and promotes catabolic responses in human chondrocytes. Scientific Reports, 2017, 7, 42990.	3.3	16
35	Ageâ€related reduction in the expression of FOXO transcription factors and correlations with intervertebral disc degeneration. Journal of Orthopaedic Research, 2017, 35, 2682-2691.	2.3	60
36	Tendons and Ligaments: Connecting Developmental Biology to Musculoskeletal Disease Pathogenesis. Journal of Bone and Mineral Research, 2017, 32, 1773-1782.	2.8	56

#	Article	IF	CITATIONS
37	Regulated in Development and DNA Damage Response 1 Deficiency Impairs Autophagy and Mitochondrial Biogenesis in Articular Cartilage and Increases the Severity of Experimental Osteoarthritis. Arthritis and Rheumatology, 2017, 69, 1418-1428.	5.6	66
38	Relevance of meniscal cell regional phenotype to tissue engineering. Connective Tissue Research, 2017, 58, 259-270.	2.3	23
39	Transthyretin deposition promotes progression of osteoarthritis. Aging Cell, 2017, 16, 1313-1322.	6.7	22
40	Increased autophagy contributes to the inflammatory phenotype of juvenile idiopathic arthritis synovial fluid T cells. Rheumatology, 2017, 56, 1694-1699.	1.9	12
41	Role of Fibulin 3 in Agingâ€Related Joint Changes and Osteoarthritis Pathogenesis in Human and Mouse Knee Cartilage. Arthritis and Rheumatology, 2017, 69, 576-585.	5.6	27
42	Expression of <i>Noggin</i> and <i>Gremlin1</i> and its implications in fine-tuning BMP activities in mouse cartilage tissues. Journal of Orthopaedic Research, 2017, 35, 1671-1682.	2.3	11
43	Gene targeting of the transcription factor Mohawk in rats causes heterotopic ossification of Achilles tendon via failed tenogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7840-7845.	7.1	93
44	Increased DNA Methylation and Reduced Expression of Transcription Factors in Human Osteoarthritis Cartilage. Arthritis and Rheumatology, 2016, 68, 1876-1886.	5.6	61
45	Hyaluronan concentration and size distribution in human knee synovial fluid: variations with age and cartilage degeneration. Arthritis Research and Therapy, 2016, 18, 18.	3.5	94
46	Increased autophagy in CD4 ⁺ T cells of rheumatoid arthritis patients results in Tâ€cell hyperactivation and apoptosis resistance. European Journal of Immunology, 2016, 46, 2862-2870.	2.9	75
47	Mohawk promotes the maintenance and regeneration of the outer annulus fibrosus of intervertebral discs. Nature Communications, 2016, 7, 12503.	12.8	78
48	Osteoarthritis in the Elderly. , 2016, , 309-353.		2
49	Transthyretin Deposition in Articular Cartilage: A Novel Mechanism in the Pathogenesis of Osteoarthritis. Arthritis and Rheumatology, 2015, 67, 2097-2107.	5.6	40
50	Mitochondrial Biogenesis Is Impaired in Osteoarthritis Chondrocytes but Reversible via Peroxisome Proliferator–Activated Receptor γ Coactivator 1α. Arthritis and Rheumatology, 2015, 67, 2141-2153.	5.6	201
51	Bach1 deficiency reduces severity of osteoarthritis through upregulation of heme oxygenase-1. Arthritis Research and Therapy, 2015, 17, 285.	3.5	65
52	Autophagy Activation and Protection From Mitochondrial Dysfunction in Human Chondrocytes. Arthritis and Rheumatology, 2015, 67, 966-976.	5.6	142
53	Transcription factor Mohawk controls tenogenic differentiation of bone marrow mesenchymal stem cells in vitro and in vivo. Journal of Orthopaedic Research, 2015, 33, 1-8.	2.3	83
54	Antisense RNA Controls LRP1 Sense Transcript Expression through Interaction with a Chromatin-Associated Protein, HMGB2. Cell Reports, 2015, 11, 967-976.	6.4	75

#	Article	IF	CITATIONS
55	Chondrocyte clusters adjacent to sites of cartilage degeneration have characteristics of progenitor cells. Journal of Orthopaedic Research, 2015, 33, 548-555.	2.3	39
56	The Relationship of Autophagy Defects to Cartilage Damage During Joint Aging in a Mouse Model. Arthritis and Rheumatology, 2015, 67, 1568-1576.	5.6	151
57	Potential Mechanisms of PTA: Cell Death. , 2015, , 185-199.		0
58	Aging and Post-Traumatic Arthritis. , 2015, , 165-183.		0
59	Boning up on autophagy. Autophagy, 2014, 10, 7-19.	9.1	146
60	Exosomes from IL-1β stimulated synovial fibroblasts induce osteoarthritic changes in articular chondrocytes. Arthritis Research and Therapy, 2014, 16, R163.	3.5	218
61	The Mohawk homeobox transcription factor regulates the differentiation of tendons and volar plates. Journal of Orthopaedic Science, 2014, 19, 172-180.	1.1	18
62	Palmitate Has Proapoptotic and Proinflammatory Effects on Articular Cartilage and Synergizes With Interleukinâ€1. Arthritis and Rheumatology, 2014, 66, 1779-1788.	5.6	84
63	Peroxisome Proliferator–Activated Receptor γ Coactivator 1α and FoxO3A Mediate Chondroprotection by AMPâ€Activated Protein Kinase. Arthritis and Rheumatology, 2014, 66, 3073-3082.	5.6	83
64	FoxO Transcription Factors Support Oxidative Stress Resistance in Human Chondrocytes. Arthritis and Rheumatology, 2014, 66, 3349-3358.	5.6	171
65	Cellular and extracellular matrix changes in anterior cruciate ligaments during human knee aging and osteoarthritis. Arthritis Research and Therapy, 2013, 15, R29.	3.5	60
66	C/EBP homologous protein drives pro-catabolic responses in chondrocytes. Arthritis Research and Therapy, 2013, 15, R218.	3.5	56
67	Linked decreases in liver kinase B1 and AMP-activated protein kinase activity modulate matrix catabolic responses to biomechanical injury in chondrocytes. Arthritis Research and Therapy, 2013, 15, R77.	3.5	75
68	Zoneâ€specific gene expression patterns in articular cartilage. Arthritis and Rheumatism, 2013, 65, 418-428.	6.7	68
69	Digital micromirror device projection printing system for meniscus tissue engineering. Acta Biomaterialia, 2013, 9, 7218-7226.	8.3	143
70	Transcription Factor Mohawk and the Pathogenesis of Human Anterior Cruciate Ligament Degradation. Arthritis and Rheumatism, 2013, 65, 2081-2089.	6.7	27
71	Glucosamine Activates Autophagy In Vitro and In Vivo. Arthritis and Rheumatism, 2013, 65, 1843-1852.	6.7	82
72	Histopathological changes in the human posterior cruciate ligament during aging and osteoarthritis: correlations with anterior cruciate ligament and cartilage changes. Annals of the Rheumatic Diseases, 2013, 72, 271-277.	0.9	43

Martin K Lotz

#	Article	IF	CITATIONS
73	Effects of Perfusion and Dynamic Loading on Human Neocartilage Formation in Alginate Hydrogels. Tissue Engineering - Part A, 2012, 18, 1784-1792.	3.1	27
74	Autophagy: A New Therapeutic Target in Cartilage Injury and Osteoarthritis. Journal of the American Academy of Orthopaedic Surgeons, The, 2012, 20, 261-262.	2.5	24
75	Autophagy activation by rapamycin reduces severity of experimental osteoarthritis. Annals of the Rheumatic Diseases, 2012, 71, 575-581.	0.9	364
76	Effects of aging on articular cartilage homeostasis. Bone, 2012, 51, 241-248.	2.9	301
77	Mechanical injury suppresses autophagy regulators and pharmacologic activation of autophagy results in chondroprotection. Arthritis and Rheumatism, 2012, 64, 1182-1192.	6.7	121
78	Anterior cruciate ligament changes in the human knee joint in aging and osteoarthritis. Arthritis and Rheumatism, 2012, 64, 696-704.	6.7	140
79	Glucosamine regulates autophagy in vitro and in vivo. FASEB Journal, 2012, 26, 626.20.	0.5	Ο
80	Vimentin contributes to changes in chondrocyte stiffness in osteoarthritis. Journal of Orthopaedic Research, 2011, 29, 20-25.	2.3	72
81	HMGB factors are required for posterior digit development through integrating signaling pathway activities. Developmental Dynamics, 2011, 240, 1151-1162.	1.8	30
82	Chondrocyte AMP-activated protein kinase activity suppresses matrix degradation responses to proinflammatory cytokines interleukin-11² and tumor necrosis factor 1±. Arthritis and Rheumatism, 2011, 63, 1928-1937.	6.7	139
83	Expression Patterns and Function of Chromatin Protein HMGB2 during Mesenchymal Stem Cell Differentiation. Journal of Biological Chemistry, 2011, 286, 41489-41498.	3.4	47
84	Autophagy and cartilage homeostasis mechanisms in joint health, aging and OA. Nature Reviews Rheumatology, 2011, 7, 579-587.	8.0	238
85	Tissue neogenesis and STROâ€l expression in immature and mature articular cartilage. Journal of Orthopaedic Research, 2010, 28, 96-102.	2.3	26
86	Rho kinase–dependent activation of SOX9 in chondrocytes. Arthritis and Rheumatism, 2010, 62, 191-200.	6.7	78
87	Autophagy is a protective mechanism in normal cartilage, and its agingâ€related loss is linked with cell death and osteoarthritis. Arthritis and Rheumatism, 2010, 62, 791-801.	6.7	531
88	Cartilage cell clusters. Arthritis and Rheumatism, 2010, 62, 2206-2218.	6.7	176
89	MicroRNA-140 plays dual roles in both cartilage development and homeostasis. Genes and Development, 2010, 24, 1173-1185.	5.9	502
90	Extracellular sulfatases support cartilage homeostasis by regulating BMP and FGF signaling pathways. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10202-10207.	7.1	114

#	Article	IF	CITATIONS
91	New developments in osteoarthritis: Posttraumatic osteoarthritis: pathogenesis and pharmacological treatment options. Arthritis Research and Therapy, 2010, 12, 211.	3.5	250
92	Aging-related loss of the chromatin protein HMGB2 in articular cartilage is linked to reduced cellularity and osteoarthritis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1181-1186.	7.1	124
93	Chromatin protein HMGB2 regulates articular cartilage surface maintenance via β-catenin pathway. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16817-16822.	7.1	63
94	MicroRNAâ€140 is expressed in differentiated human articular chondrocytes and modulates interleukinâ€1 responses. Arthritis and Rheumatism, 2009, 60, 2723-2730.	6.7	507
95	Mesenchymal progenitor cell markers in human articular cartilage: normal distribution and changes in osteoarthritis. Arthritis Research and Therapy, 2009, 11, R85.	3.5	223
96	Chemotaxis of human articular chondrocytes and mesenchymal stem cells. Journal of Orthopaedic Research, 2008, 26, 1407-1412.	2.3	161
97	The effect of glycosaminoglycan loss on chondrocyte viability: A study on porcine cartilage explants. Arthritis and Rheumatism, 2008, 58, 1076-1085.	6.7	50
98	Repression of chondrogenesis through binding of notch signaling proteins HESâ€1 and HEYâ€1 to Nâ€box domains in the COL2A1 enhancer site. Arthritis and Rheumatism, 2008, 58, 2754-2763.	6.7	76
99	Rho kinase–dependent CCL20 induced by dynamic compression of human chondrocytes. Arthritis and Rheumatism, 2008, 58, 2735-2742.	6.7	39
100	Expression of novel extracellular sulfatases Sulf-1 and Sulf-2 in normal and osteoarthritic articular cartilage. Arthritis Research and Therapy, 2008, 10, R61.	3.5	59
101	Stage-Specific Secretion of HMGB1 in Cartilage Regulates Endochondral Ossification. Molecular and Cellular Biology, 2007, 27, 5650-5663.	2.3	90
102	Caspase inhibitors reduce severity of cartilage lesions in experimental osteoarthritis. Arthritis and Rheumatism, 2006, 54, 1814-1821.	6.7	153
103	Mesenchymal progenitor cells in adult human articular cartilage. Biorheology, 2006, 43, 447-54.	0.4	88
104	Inflammation-Induced Chondrocyte Hypertrophy Is Driven by Receptor for Advanced Glycation End Products. Journal of Immunology, 2005, 175, 8296-8302.	0.8	163
105	WISP3-dependent regulation of type II collagen and aggrecan production in chondrocytes. Arthritis and Rheumatism, 2004, 50, 488-497.	6.7	77
106	Identification of mesenchymal progenitor cells in normal and osteoarthritic human articular cartilage. Arthritis and Rheumatism, 2004, 50, 1522-1532.	6.7	457
107	Cold Sodium Thiomalate and Chloroquine Inhibit Cytokine Production in Monocytic THP-1 Cells Through Distinct Transcriptional and Posttranslational Mechanisms. Journal of Clinical Immunology, 2003, 23, 477-484.	3.8	44
108	Mechanisms of sodium nitroprusside-induced death in human chondrocytes. Rheumatology International, 2003, 23, 241-247.	3.0	18

#	Article	IF	CITATIONS
109	Role of nitric oxide, reactive oxygen species, and p38 MAP kinase in the regulation of human chondrocyte apoptosis. Journal of Cellular Physiology, 2003, 197, 379-387.	4.1	64
110	Accelerated, aging-dependent development of osteoarthritis in α1 integrin-deficient mice. Arthritis and Rheumatism, 2003, 48, 2873-2880.	6.7	141
111	Focal Adhesion Kinase and Mitogen-activated Protein Kinases Are Involved in Chondrocyte Activation by the 29-kDa Amino-terminal Fibronectin Fragment. Journal of Biological Chemistry, 2002, 277, 907-911.	3.4	66
112	In Vivo Changes After Mechanical Injury. Clinical Orthopaedics and Related Research, 2001, 391, S116-S123.	1.5	38
113	Impact of Mechanical Trauma on Matrix and Cells. Clinical Orthopaedics and Related Research, 2001, 391, S90-S99.	1.5	118
114	Cytokines in Cartilage Injury and Repair. Clinical Orthopaedics and Related Research, 2001, 391, S108-S115.	1.5	145
115	Up-regulated expression of the phosphodiesterase nucleotide pyrophosphatase family member PC-1 is a marker and pathogenic factor for knee meniscal cartilage matrix calcification. Arthritis and Rheumatism, 2001, 44, 1071-1081.	6.7	145
116	Regulation of CD95 (Fas/APO-1)-induced apoptosis in human chondrocytes. Arthritis and Rheumatism, 2001, 44, 1644-1653.	6.7	55
117	The osteoprotegerin/receptor activator of nuclear factor ?B/receptor activator of nuclear factor ?B ligand system in cartilage. Arthritis and Rheumatism, 2001, 44, 2768-2776.	6.7	106
118	<i>N</i> -Acetylglucosamine Prevents IL-1β-Mediated Activation of Human Chondrocytes. Journal of Immunology, 2001, 166, 5155-5160.	0.8	193
119	Prevention of Chondrocyte Apoptosis. Journal of Bone and Joint Surgery - Series A, 2001, 83, 25-26.	3.0	71
120	Biomechanical regulation of matrix metalloproteinase-9 in cultured chondrocytes. Journal of Orthopaedic Research, 2000, 18, 899-908.	2.3	66
121	IL-1β Protects Human Chondrocytes from CD95-Induced Apoptosis. Journal of Immunology, 2000, 164, 2233-2239.	0.8	65
122	Cell density modulates apoptosis in human articular chondrocytes. Journal of Cellular Physiology, 1999, 180, 439-447.	4.1	27
123	THE ROLE OF NITRIC OXIDE IN ARTICULAR CARTILAGE DAMAGE. Rheumatic Disease Clinics of North America, 1999, 25, 269-282.	1.9	153
124	Cell density modulates apoptosis in human articular chondrocytes. Journal of Cellular Physiology, 1999, 180, 439-447.	4.1	2
125	Chondrocyte apoptosis and nitric oxide production during experimentally induced osteoarthritis. Arthritis and Rheumatism, 1998, 41, 1266-1274.	6.7	311
126	Linkage of chondrocyte apoptosis and cartilage degradation in human osteoarthritis. Arthritis and Rheumatism, 1998, 41, 1632-1638.	6.7	486

#	Article	IF	CITATIONS
127	Interleukin-17-induced Gene Expression in Articular Chondrocytes Is Associated with Activation of Mitogen-activated Protein Kinases and NF-κB. Journal of Biological Chemistry, 1998, 273, 27467-27473.	3.4	344
128	Differential effects of aging on human chondrocyte responses to transforming growth factor β. Increased pyrophosphate production and decreased cell proliferation. Arthritis and Rheumatism, 1997, 40, 1275-1281.	6.7	53
129	FAS/FAS ligand expression and induction of apoptosis in chondrocytes. Arthritis and Rheumatism, 1997, 40, 1749-1755.	6.7	175
130	Differential effects of aging on human chondrocyte responses to transforming growth factor-β: Increased pyrophosphate production and decreased cell proliferation. Arthritis and Rheumatism, 1997, 40, 1275-1281.	6.7	63
131	The nerve growth factor/tumor necrosis factor receptor family. Journal of Leukocyte Biology, 1996, 60, 1-7.	3.3	54
132	Growth factor responsiveness of human articular chondrocytes in aging and development. Arthritis and Rheumatism, 1995, 38, 960-968.	6.7	182
133	Tyrosine kinases are involved with the expression of inducible nitric oxide synthase in human articular chondrocytes. Journal of Cellular Physiology, 1995, 163, 545-554.	4.1	50
134	IL-1-Induced Nitric Oxide Inhibits Chondrocyte Proliferation via PGE2. Experimental Cell Research, 1995, 218, 319-325.	2.6	122
135	Growth factor responsiveness of human articular chondrocytes: Distinct profiles in primary chondrocytes, subcultured chondrocytes, and fibroblasts. Journal of Cellular Physiology, 1994, 158, 476-484.	4.1	156
136	Integrin expression by human articular chondrocytes. Arthritis and Rheumatism, 1994, 37, 537-544.	6.7	135
137	Inducible nitric oxide synthase from human articular chondrocytes: cDNA cloning and analysis of mRNA expression. BBA - Proteins and Proteomics, 1994, 1208, 145-150.	2.1	79
138	Interleukin-6 and Interstitial Cystitis. Journal of Urology, 1994, 152, 869-873.	0.4	118
139	Interleukin-6. Cancer Investigation, 1993, 11, 732-742.	1.3	71
140	Interleukin-6 and transforming growth factor-? synergistically stimulate chondrosarcoma cell proliferation. Journal of Cellular Physiology, 1991, 149, 117-124.	4.1	32