
Zongcun Liang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5410684/publications.pdf Version: 2024-02-01

ZONCCUN LIANC

#	Article	IF	CITATIONS
1	UV soaking for enhancing the photocurrent and response speed of Cs2AgBiBr6-based all-inorganic perovskite photodetectors. Science China Materials, 2022, 65, 442-450.	6.3	7
2	Quantifying Efficiency Limitations in Allâ€Inorganic Halide Perovskite Solar Cells. Advanced Materials, 2022, 34, e2108132.	21.0	44
3	Enhanced Hole Extraction of WO _x /V ₂ O _x Dopantâ€Free Contact for pâ€type Silicon Solar Cell. Advanced Materials Interfaces, 2022, 9, .	3.7	7
4	Gadolinium Fluoride as a High-Thickness-Tolerant Electron-Selective Contact Material for Solar Cells. ACS Applied Energy Materials, 2022, 5, 4351-4357.	5.1	8
5	Dopantâ€Free Bifacial Silicon Solar Cells. Solar Rrl, 2021, 5, 2000771.	5.8	11
6	Yttrium Fluoride-Based Electron-Selective Contacts for Crystalline Silicon Solar Cells. ACS Applied Energy Materials, 2021, 4, 2158-2164.	5.1	14
7	The Impact of Reflectance Variation in Silicon Heterojunction Solar Cells and Modules on the Perception of Color Differences. IEEE Journal of Photovoltaics, 2021, 11, 306-311.	2.5	0
8	Highâ€Performance Europium Fluoride Electronâ€Selective Contacts for Efficient Crystalline Silicon Solar Cells. Solar Rrl, 2021, 5, 2100057.	5.8	11
9	Cerous Fluoride Dopantâ€Free Electronâ€Selective Contact for Crystalline Silicon Solar Cells. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100135.	2.4	11
10	Dopantâ€Free Backâ€Contacted Silicon Solar Cells with an Efficiency of 22.1%. Physica Status Solidi - Rapid Research Letters, 2020, 14, 1900688.	2.4	27
11	Indium sulfide-based electron-selective contact and dopant-free heterojunction silicon solar cells. Solar Energy, 2020, 211, 759-766.	6.1	8
12	Degradation Mechanism and Stability Improvement of Dopant-Free ZnO/LiF <i>_x</i> /Al Electron Nanocontacts in Silicon Heterojunction Solar Cells. ACS Applied Nano Materials, 2020, 3, 11391-11398.	5.0	18
13	Development of Conductive SiCx:H as a New Hydrogenation Technique for Tunnel Oxide Passivating Contacts. ACS Applied Materials & Interfaces, 2020, 12, 29986-29992.	8.0	2
14	Highâ€Performance and Stable Dopantâ€Free Silicon Solar Cells with Magnesium Acetylacetonate Electronâ€Selective Contacts. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000103.	2.4	9
15	12.29% Low Temperature–Processed Dopantâ€Free CdS/pâ€Si Heterojunction Solar Cells. Advanced Materials Interfaces, 2019, 6, 1900367.	3.7	29
16	Chromium Trioxide Hole-Selective Heterocontacts for Silicon Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 13645-13651.	8.0	35
17	Efficiency enhancement of bifacial PERC solar cells with laserâ€doped selective emitter and doubleâ€screenâ€printed Al grid. Progress in Photovoltaics: Research and Applications, 2018, 26, 752-760.	8.1	24
18	Analysis of the Degradation of Monocrystalline Silicon Photovoltaic Modules After Long-Term Exposure for 18 Years in a Hot–Humid Climate in China. IEEE Journal of Photovoltaics, 2018, , 1-7.	2.5	11

ZONGCUN LIANG

#	Article	IF	CITATIONS
19	Conductive Cuprous Iodide Hole-Selective Contacts with Thermal and Ambient Stability for Silicon Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 43699-43706.	8.0	19
20	Chromium Trioxide Hole-Selective Heterocontacts for Silicon Solar Cells. , 2018, , .		1
21	22% efficient dopant-free interdigitated back contact silicon solar cells. AIP Conference Proceedings, 2018, , .	0.4	20
22	Comparative study of silver nanoparticles embedded in dielectric layers for solar cell application. , 2014, , .		1
23	The preparation of AZO/a-Si/c-Si heterojunction structure on p-type silicon substrate for solar cell application. Materials Letters, 2014, 137, 428-431.	2.6	2
24	Preparation of self-assembled Ag nanoparticles for effective light-trapping in crystalline silicon solar cells. RSC Advances, 2014, 4, 13757.	3.6	13
25	Effect of porous Si and an etch-back process on the performance of a selective emitter solar cell. Solar Energy Materials and Solar Cells, 2013, 109, 26-32.	6.2	14
26	Structure simulation of screen printed local back surface field for rear passivated silicon solar cells. , 2012, , .		2
27	Specific contact resistance measurements on C-Si solar cells by novel TLM method. , 2012, , .		4
28	Study on the SiN x /Al rear reflectance performance of crystalline silicon solar cells. Science China Technological Sciences, 2010, 53, 3209-3213.	4.0	3