Carissa J Klein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5410592/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Marxan with Zones: Software for optimal conservation based land- and sea-use zoning. Environmental Modelling and Software, 2009, 24, 1513-1521.	1.9	436
2	Striking a Balance between Biodiversity Conservation and Socioeconomic Viability in the Design of Marine Protected Areas. Conservation Biology, 2008, 22, 691-700.	2.4	249
3	Achieving the triple bottom line in the face of inherent trade-offs among social equity, economic return, and conservation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6229-6234.	3.3	231
4	The Location and Protection Status of Earth's Diminishing Marine Wilderness. Current Biology, 2018, 28, 2506-2512.e3.	1.8	192
5	Replacing underperforming protected areas achieves better conservation outcomes. Nature, 2010, 466, 365-367.	13.7	188
6	Incorporating ecological and evolutionary processes into continentalâ€scale conservation planning. Ecological Applications, 2009, 19, 206-217.	1.8	187
7	Bias in protectedâ€area location and its effects on longâ€ŧerm aspirations of biodiversity conventions. Conservation Biology, 2018, 32, 127-134.	2.4	187
8	Optimal Conservation Outcomes Require Both Restoration and Protection. PLoS Biology, 2015, 13, e1002052.	2.6	185
9	Integrated Land-Sea Conservation Planning: The Missing Links. Annual Review of Ecology, Evolution, and Systematics, 2011, 42, 381-409.	3.8	181
10	Incorporating climate change into spatial conservation prioritisation: A review. Biological Conservation, 2016, 194, 121-130.	1.9	170
11	Hitting the target and missing the point: targetâ€based conservation planning in context. Conservation Letters, 2009, 2, 4-11.	2.8	155
12	Avoiding Costly Conservation Mistakes: The Importance of Defining Actions and Costs in Spatial Priority Setting. PLoS ONE, 2008, 3, e2586.	1.1	153
13	Spatial socioeconomic data as a cost in systematic marine conservation planning. Conservation Letters, 2009, 2, 206-215.	2.8	149
14	Spatial marine zoning for fisheries and conservation. Frontiers in Ecology and the Environment, 2010, 8, 349-353.	1.9	133
15	Climate Velocity Can Inform Conservation in a Warming World. Trends in Ecology and Evolution, 2018, 33, 441-457.	4.2	124
16	Shortfalls in the global protected area network at representing marine biodiversity. Scientific Reports, 2015, 5, 17539.	1.6	122
17	Integrating regional conservation priorities for multiple objectives into national policy. Nature Communications, 2015, 6, 8208.	5.8	113
18	Climate velocity reveals increasing exposure of deep-ocean biodiversity to future warming. Nature Climate Change, 2020, 10, 576-581.	8.1	99

#	Article	IF	CITATIONS
19	Effectiveness of marine reserve networks in representing biodiversity and minimizing impact to fishermen: a comparison of two approaches used in California. Conservation Letters, 2008, 1, 44-51.	2.8	82
20	Ocean zoning for conservation, fisheries and marine renewable energy: Assessing trade-offs and co-location opportunities. Journal of Environmental Management, 2015, 152, 201-209.	3.8	82
21	Prioritizing Land and Sea Conservation Investments to Protect Coral Reefs. PLoS ONE, 2010, 5, e12431.	1.1	78
22	Social equity and the probability of success of biodiversity conservation. Global Environmental Change, 2015, 35, 299-306.	3.6	69
23	Developing Marine Protected Area Networks in the Coral Triangle: Good Practices for Expanding the Coral Triangle Marine Protected Area System. Coastal Management, 2014, 42, 183-205.	1.0	67
24	Wilderness and future conservation priorities in Australia. Diversity and Distributions, 2009, 15, 1028-1036.	1.9	66
25	Forest conservation delivers highly variable coral reef conservation outcomes. Ecological Applications, 2012, 22, 1246-1256.	1.8	64
26	Conservation Planning when Costs Are Uncertain. Conservation Biology, 2010, 24, 1529-1537.	2.4	61
27	Spatioâ€temporal marine conservation planning to support highâ€latitude coral range expansion under climate change. Diversity and Distributions, 2014, 20, 859-871.	1.9	57
28	Spatial conservation prioritization inclusive of wilderness quality: A case study of Australia's biodiversity. Biological Conservation, 2009, 142, 1282-1290.	1.9	51
29	Incorporating uncertainty associated with habitat data in marine reserve design. Biological Conservation, 2013, 162, 41-51.	1.9	49
30	Critical research needs for managing coral reef marine protected areas: Perspectives of academics and managers. Journal of Environmental Management, 2013, 114, 84-91.	3.8	49
31	Improving policy efficiency and effectiveness to save more species: A case study of the megadiverse country Australia. Biological Conservation, 2015, 182, 102-108.	1.9	47
32	Area Requirements to Safeguard Earth's Marine Species. One Earth, 2020, 2, 188-196.	3.6	46
33	Global rarity of intact coastal regions. Conservation Biology, 2022, 36, .	2.4	45
34	Ecosystem-based adaptation in marine ecosystems of tropical Oceania in response to climate change Pacific Conservation Biology, 2011, 17, 241.	0.5	43
35	A multidisciplinary approach in the design of marine protected areas: Integration of science and stakeholder based methods. Ocean and Coastal Management, 2015, 103, 86-93.	2.0	43
36	Reconciling Development and Conservation under Coastal Squeeze from Rising Sea Level. Conservation Letters, 2016, 9, 361-368.	2.8	43

#	Article	IF	CITATIONS
37	Tradeoffs in marine reserve design: habitat condition, representation, and socioeconomic costs. Conservation Letters, 2013, 6, 324-332.	2.8	42
38	The effectiveness of marine reserve systems constructed using different surrogates of biodiversity. Conservation Biology, 2015, 29, 657-667.	2.4	42
39	Prioritising Mangrove Ecosystem Services Results in Spatially Variable Management Priorities. PLoS ONE, 2016, 11, e0151992.	1.1	42
40	Tracing the influence of land-use change on water quality and coral reefs using a Bayesian model. Scientific Reports, 2017, 7, 4740.	1.6	42
41	Integrated planning for land–sea ecosystem connectivity to protect coral reefs. Biological Conservation, 2013, 165, 35-42.	1.9	34
42	Opportunities and constraints for implementing integrated land–sea management on islands. Environmental Conservation, 2017, 44, 254-266.	0.7	34
43	Improving conservation outcomes for coral reefs affected by future oil palm development in Papua New Guinea. Biological Conservation, 2016, 203, 43-54.	1.9	33
44	The Effect of Carbon Credits on Savanna Land Management and Priorities for Biodiversity Conservation. PLoS ONE, 2011, 6, e23843.	1.1	33
45	Evaluating the influence of candidate terrestrial protected areas on coral reef condition in Fiji. Marine Policy, 2014, 44, 360-365.	1.5	32
46	Reconciling recreational use and conservation values in a coastal protected area. Journal of Applied Ecology, 2016, 53, 1206-1214.	1.9	32
47	Prioritization of Marine Turtle Management Projects: A Protocol that Accounts for Threats to Different Life History Stages. Conservation Letters, 2017, 10, 547-554.	2.8	32
48	From Marxan to management: ocean zoning with stakeholders for Tun Mustapha Park in Sabah, Malaysia. Oryx, 2018, 52, 775-786.	0.5	31
49	Where Does River Runoff Matter for Coastal Marine Conservation?. Frontiers in Marine Science, 2016, 3, .	1.2	29
50	A guide to modelling priorities for managing landâ€based impacts on coastal ecosystems. Journal of Applied Ecology, 2019, 56, 1106-1116.	1.9	28
51	Increased sediment loads cause non-linear decreases in seagrass suitable habitat extent. PLoS ONE, 2017, 12, e0187284.	1.1	27
52	Simple rules can guide whether land- or ocean-based conservation will best benefit marine ecosystems. PLoS Biology, 2017, 15, e2001886.	2.6	27
53	Habitat change mediates the response of coral reef fish populations to terrestrial run-off. Marine Ecology - Progress Series, 2017, 576, 55-68.	0.9	25
54	Prioritising catchment management projects to improve marine water quality. Environmental Science and Policy, 2016, 59, 35-43.	2.4	24

#	Article	IF	CITATIONS
55	Fisheries and biodiversity benefits of using static versus dynamic models for designing marine reserve networks. Ecosphere, 2015, 6, art182.	1.0	23
56	Bestâ€practice forestry management delivers diminishing returns for coral reefs with increased landâ€clearing. Journal of Applied Ecology, 2020, 57, 2381-2392.	1.9	23
57	Incorporating climate velocity into the design of climateâ€smart networks of marine protected areas. Methods in Ecology and Evolution, 2021, 12, 1969-1983.	2.2	22
58	Balancing extractive and non-extractive uses in marine conservation plans. Marine Policy, 2015, 52, 11-18.	1.5	21
59	The Effect of Applying Alternate IPCC Climate Scenarios to Marine Reserve Design for Range Changing Species. Conservation Letters, 2015, 8, 320-328.	2.8	21
60	To Achieve Big Wins for Terrestrial Conservation, Prioritize Protection of Ecoregions Closest to Meeting Targets. One Earth, 2020, 2, 479-486.	3.6	21
61	Incorporating Conservation Zone Effectiveness for Protecting Biodiversity in Marine Planning. PLoS ONE, 2013, 8, e78986.	1.1	20
62	Towards climate-smart, three-dimensional protected areas for biodiversity conservation in the high seas. Nature Climate Change, 2022, 12, 402-407.	8.1	20
63	Testing the effectiveness of surrogate species for conservation planning in the Greater Virunga Landscape, Africa. Landscape and Urban Planning, 2016, 145, 1-11.	3.4	15
64	Can we determine conservation priorities without clear objectives?. Biological Conservation, 2010, 143, 2-4.	1.9	14
65	A habitatâ€based approach to predict impacts of marine protected areas on fishers. Conservation Biology, 2018, 32, 1096-1106.	2.4	14
66	A traitâ€based framework for assessing the vulnerability of marine species to human impacts. Ecosphere, 2022, 13, .	1.0	14
67	Prioritising the protection of habitat utilised by southern cassowaries Casuarius casuarius johnsonii. Endangered Species Research, 2012, 17, 53-61.	1.2	12
68	Systematic Conservation Planning with Marxan. , 2017, , 211-227.		12
69	Spatial costâ€benefit analysis of blue restoration and factors driving net benefits globally. Conservation Biology, 2021, 35, 1850-1860.	2.4	12
70	Multinational coordination required for conservation of over 90% of marine species. Global Change Biology, 2021, 27, 6206-6216.	4.2	12
71	Trade-offs between data resolution, accuracy, and cost when choosing information to plan reserves for coral reef ecosystems. Journal of Environmental Management, 2017, 188, 108-119.	3.8	10
72	Software for prioritizing conservation actions based on probabilistic information. Conservation Biology, 2021, 35, 1299-1308.	2.4	10

#	Article	IF	CITATIONS
73	Incorporating feasibility and collaboration into large-scale planning for regional recovery of coral reef fisheries. Marine Ecology - Progress Series, 2018, 604, 211-222.	0.9	9
74	Tradeâ€offs in tripleâ€bottomâ€ine outcomes when recovering fisheries. Fish and Fisheries, 2018, 19, 107-116.	2.7	8
75	The potential for applying "Nonviolent Communication―in conservation science. Conservation Science and Practice, 2021, 3, e540.	0.9	6
76	Setting conservation priorities in Fiji: Decision science versus additive scoring systems. Marine Policy, 2014, 48, 204-205.	1.5	5
77	Does the social equitability of community and incentive based conservation interventions in non-OECD countries, affect human well-being? A systematic review protocol. Environmental Evidence, 2016, 5, .	1.1	5
78	The role of scale in designing protected area systems to conserve poorly known species. Ecosphere, 2015, 6, 1-17.	1.0	3
79	Walk the talk, don't eat it: a call for sustainable seafood leadership from marine scientists. Environmental Conservation 2015 42 102-103	0.7	2