Pritam Ganguly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5410451/publications.pdf

Version: 2024-02-01

643344 843174 1,557 19 15 20 citations h-index g-index papers 20 20 20 2117 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A Transfer Free Energy Based Implicit Solvent Model for Protein Simulations in Solvent Mixtures: Urea-Induced Denaturation as a Case Study. Journal of Physical Chemistry B, 2022, 126, 4472-4482.	1.2	3
2	Amyloid Oligomers: A Joint Experimental/Computational Perspective on Alzheimer's Disease, Parkinson's Disease, Type II Diabetes, and Amyotrophic Lateral Sclerosis. Chemical Reviews, 2021, 121, 2545-2647.	23.0	406
3	Catalytic Cross Talk between Key Peptide Fragments That Couple Alzheimer's Disease with Amyotrophic Lateral Sclerosis. Journal of the American Chemical Society, 2021, 143, 3494-3502.	6.6	10
4	ADD Force Field for Sugars and Polyols: Predicting the Additivity of Protein–Osmolyte Interaction. Journal of Physical Chemistry B, 2020, 124, 7779-7790.	1.2	11
5	Terminal Capping of an Amyloidogenic Tau Fragment Modulates Its Fibrillation Propensity. Journal of Physical Chemistry B, 2020, 124, 8772-8783.	1.2	17
6	Protein Stability in TMAO and Mixed Urea–TMAO Solutions. Journal of Physical Chemistry B, 2020, 124, 6181-6197.	1.2	50
7	Distinct and Nonadditive Effects of Urea and Guanidinium Chloride on Peptide Solvation. Journal of Physical Chemistry Letters, 2019, 10, 7406-7413.	2.1	23
8	Trimethylamine <i>N</i> -oxide Counteracts Urea Denaturation by Inhibiting Protein–Urea Preferential Interaction. Journal of the American Chemical Society, 2018, 140, 483-492.	6.6	94
9	Signature of an aggregation-prone conformation of tau. Scientific Reports, 2017, 7, 44739.	1.6	69
10	Hydrophobic Association in Mixed Urea–TMAO Solutions. Journal of Physical Chemistry Letters, 2016, 7, 3052-3059.	2.1	44
11	Mutual Exclusion of Urea and Trimethylamine $\langle i \rangle N \langle i \rangle$ -Oxide from Amino Acids in Mixed Solvent Environment. Journal of Physical Chemistry Letters, 2015, 6, 581-585.	2.1	72
12	Tau Assembly: The Dominant Role of PHF6 (VQIVYK) in Microtubule Binding Region Repeat R3. Journal of Physical Chemistry B, 2015, 119, 4582-4593.	1.2	134
13	Molecular Simulation Study on Hofmeister Cations and the Aqueous Solubility of Benzene. Journal of Physical Chemistry B, 2014, 118, 5331-5339.	1.2	15
14	Systematic coarse-graining methods for soft matter simulations $\hat{a} \in \text{``a review. Soft Matter, 2013, 9, }$ 2108-2119.	1.2	301
15	Convergence of Sampling Kirkwood–Buff Integrals of Aqueous Solutions with Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 2013, 9, 1347-1355.	2.3	147
16	Representability and Transferability of Kirkwood–Buff Iterative Boltzmann Inversion Models for Multicomponent Aqueous Systems. Journal of Chemical Theory and Computation, 2013, 9, 5247-5256.	2.3	34
17	Enthalpy–Entropy of Cation Association with the Acetate Anion in Water. Journal of Chemical Theory and Computation, 2012, 8, 3804-3809.	2.3	18
18	Kirkwood–Buff Coarse-Grained Force Fields for Aqueous Solutions. Journal of Chemical Theory and Computation, 2012, 8, 1802-1807.	2.3	62

#	Article	IF	CITATIONS
19	lon Pairing in Aqueous Electrolyte Solutions with Biologically Relevant Anions. Journal of Physical Chemistry B, 2011, 115, 3734-3739.	1.2	46